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Abstract

Discourse relations bind smaller linguistic
units into coherent texts. Automatically
identifying discourse relations is difficult,
because it requires understanding the se-
mantics of the linked arguments. A more
subtle challenge is that it is not enough to
represent the meaning of each argument
of a discourse relation, because the rela-
tion may depend on links between lower-
level components, such as entity mentions.
Our solution computes distributed mean-
ing representations for each discourse ar-
gument by composition up the syntactic
parse tree. We also perform a downward
compositional pass to capture the mean-
ing of coreferent entity mentions. Implicit
discourse relations are then predicted from
these two representations, obtaining sub-
stantial improvements on the Penn Dis-
course Treebank.

1 Introduction

The high-level organization of text can be char-
acterized in terms of discourse relations between
adjacent spans of text (Knott, 1996; Mann, 1984;
Webber et al., 1999). Identifying these relations
has been shown to be relevant to tasks such as
summarization (Louis et al., 2010a; Yoshida et al.,
2014), sentiment analysis (Somasundaran et al.,
2009), coherence evaluation (Lin et al., 2011), and
question answering (Jansen et al., 2014). While
the Penn Discourse Treebank (PDTB) now pro-
vides a large dataset annotated for discourse re-
lations (Prasad et al., 2008), the automatic identi-
fication of implicit relations is a difficult task, with
state-of-the-art performance at roughly 40% (Lin
et al., 2009).

One reason for this poor performance is that dis-
course relations are rooted in semantics (Forbes-
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Figure 1: Distributed representations are com-
puted through composition over the parse.

Riley et al., 2006), which can be difficult to re-
cover from surface level features. Consider the
implicit discourse relation between the following
two sentences (also shown in Figure 1a):

(1) Bob gave Tina the burger.
She was hungry.

While a connector like because seems appropriate
here, there is little surface information to signal
this relationship, unless the model has managed to
learn a bilexical relationship between burger and
hungry. Learning all such relationships from an-
notated data — including the relationship of hun-
gry to knish, pierogie, pupusa etc — would require
far more data than can possibly be annotated.
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pute all u
i

and d
i

in time that is linear in the
length of the input. In Section 7.2, we compare
our approach with recent related work on alterna-
tive two-pass distributed compositional models.

Connection to the inside-outside algorithm
In the inside-outside algorithm for computing
marginal probabilities in a probabilistic context-
free grammar (Lari and Young, 1990), the inside
scores are constructed in a bottom-up fashion, like
our upward nodes; the outside score for node i is
constructed from a product of the outside score
of the parent ⇢(i) and the inside score of the sib-
ling s(i), like our downward nodes. The stan-
dard inside-outside algorithm sums over all pos-
sible parse trees, but since the parse tree is ob-
served in our case, a closer analogy would be to
the constrained version of the inside-outside algo-
rithm for latent variable grammars (Petrov et al.,
2006). Cohen et al. (2014) describe a tensor for-
mulation of the constrained inside-outside algo-
rithm; similarly, we could compute the downward
vectors by a tensor contraction of the parent and
sibling vectors (Smolensky, 1990; Socher et al.,
2014). However, this would involve K3 parame-
ters, rather than the K2 parameters in our matrix-
vector composition.

3 Predicting discourse relations

To predict the discourse relation between an argu-
ment pair (m,n), the decision function is a sum of
bilinear products,

 (y) = (u(m)
0 )>A

y

u(n)
0

+
X

i,j2A(m,n)

(d(m)
i

)>B
y

d(n)
j

+ b
y

, (3)

where A
y

2 RK⇥K and B
y

2 RK⇥K are the clas-
sification parameters for relation y. A scalar b

y

is
used as the bias term for relation y, and A(m,n) is
the set of coreferent entity mentions shared by the
argument pair (m,n). The decision value  (y) of
relation y is therefore based on the upward vec-
tors at the root, u(m)

0 and u(n)
0 , as well as on

the downward vectors for each pair of aligned en-
tity mentions. For the cases where there are no
coreferent entity mentions between two sentences,
A(m,n) = ?, the classification model considers
only the upward vectors at the root.

To avoid overfitting, we apply a low-
dimensional approximation to each A

y

,

A
y

= a
y,1a

>
y,2 + diag(a

y,3). (4)

The same approximation is also applied to each
B

y

, reducing the number of classification parame-
ters from 2⇥#|Y|⇥K2 to 2⇥#|Y|⇥ 3K.

Surface features Prior work has identified a
number of useful surface-level features (Lin et al.,
2009), and the classification model can easily be
extended to include them. Defining �(m,n) as the
vector of surface features extracted from the ar-
gument pair (m,n), the corresponding decision
function is modified as,

 (y) = (u(m)
0 )

>Ayu
(n)
0 +

X

i,j2A(m,n)

(d(m)
i )

>Byd
(n)
j

+ �>
y �(m,n) + by,

(5)
where �

y

is the classification weight on surface
features for relation y. We describe these features
in Section 5.

4 Large-margin learning framework

There are two sets of parameters to be
learned: the classification parameters
✓
class

= {A
y

,B
y

,�
y

, b
y

}
y2Y , and the com-

position parameters ✓
comp

= {U,V}. We use
pre-trained word representations, and do not
update them. While prior work shows that it can
be advantageous to retrain word representations
for discourse analysis (Ji and Eisenstein, 2014),
our preliminary experiments found that updating
the word representations led to serious overfitting
in this model.

Following Socher et al. (2011), we define
a large margin objective, and use backpropa-
gation to learn all parameters of the network
jointly (Goller and Kuchler, 1996). Learning is
performed using stochastic gradient descent (Bot-
tou, 1998), so we present the learning problem for
a single argument pair (m,n) with the gold dis-
course relation y⇤. The objective function for this
training example is a regularized hinge loss,

L(✓) =
X

y0:y0 6=y⇤

max

⇣
0, 1�  (y⇤

) +  (y0
)

⌘
+ �||✓||22

(6)
where ✓ = ✓

class

[ ✓
comp

is the set of learning
parameters. The regularization term �||✓||22 indi-
cates that the squared values of all parameters are
penalized by �; this corresponds to penalizing the
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Notation Explanation

`(i), r(i) left and right children of i
⇢(i), s(i) parent and sibling of i
A(m,n) set of aligned entities between argu-

ments m and n
Y set of discourse relations
y⇤ gold discourse relation
 (y) decision function
u upward vector
d downward vector
Ay classification parameter associated with

upward vectors
By classification parameter associated with

downward vectors
U composition operator in upward com-

position procedure
V composition operator in downward

composition procedure
L(✓) objective function

Table 1: Table of notation

2.1 Upward pass: argument semantics
Distributed representations for discourse argu-
ments are computed in a feed-forward “upward”
pass: each non-terminal in the binarized syntactic
parse tree has a K-dimensional vector represen-
tation that is computed from the representations of
its children, bottoming out in pre-trained represen-
tations of individual words.

We follow the Recursive Neural Network
(RNN) model of Socher et al. (2011). For a given
parent node i, we denote the left child as `(i), and
the right child as r(i); we compose their represen-
tations to obtain,

u
i

= tanh
�
U[u

`(i);ur(i)]
�
, (1)

where tanh (·) is the element-wise hyperbolic tan-
gent function (Pascanu et al., 2012), and U 2
RK⇥2K is the upward composition matrix. We ap-
ply this compositional procedure from the bottom
up, ultimately obtaining the argument-level repre-
sentation u0. The base case is found at the leaves
of the tree, which are set equal to pre-trained word
vector representations. For example, in the second
sentence of Figure 1, we combine the word repre-
sentations of was and hungry to obtain u(r)

1 , and
then combine u(r)

1 with the word representation of
she to obtain u(r)

0 . Note that the upward pass is
feedforward, meaning that there are no cycles and
all nodes can be computed in linear time.

2.2 Downward pass: entity semantics
As seen in the contrast between Examples 1 and 2,
a model that uses a bottom-up vector representa-

tion for each discourse argument would find lit-
tle to distinguish between she was hungry and he
was hungry. It would therefore almost certainly
fail to identify the correct discourse relation for at
least one of these cases, which requires tracking
the roles played by the entities that are coreferent
in each pair of sentences. To address this issue,
we augment the representation of each argument
with additional vectors, representing the seman-
tics of the role played by each coreferent entity
in each argument. For example, in (1a), Tina got
the burger, and in (1b), she was hungry. Rather
than represent this information in a logical form
— which would require robust parsing to a logi-
cal representation — we represent it through addi-
tional distributed vectors.

The role of a constituent i can be viewed as a
combination of information from two neighboring
nodes in the parse tree: its parent ⇢(i), and its sib-
ling s(i). We can make a downward pass, comput-
ing the downward vector d

i

from the downward
vector of the parent d

⇢(i), and the upward vector
of the sibling u

s(i):

d
i

= tanh
�
V[d

⇢(i);us(i)]
�
, (2)

where V 2 RK⇥2K is the downward composition
matrix. The base case of this recursive procedure
occurs at the root of the parse tree, which is set
equal to the upward representation, d0 , u0. This
procedure is illustrated in Figure 1b: for Tina, the
parent node is d(`)

2 , and the sibling is u(`)
3 .

This up-down compositional algorithm propa-
gates sentence-level distributed semantics back to
entity mentions. The representation of each men-
tion’s role in the sentence is based on the corre-
sponding role of the parent node in the parse tree,
and on the internal meaning representation of the
sibling node, which is computed by upward com-
position. Note that this algorithm is designed to
maintain the feedforward nature of the neural net-
work, so that we can efficiently compute all nodes
without iterating. Each downward node d

i

influ-
ences only other downward nodes d

j

where j > i,
meaning that the downward pass is feedforward.
The upward node is also feedforward: each up-
ward node u

i

influences only other upward nodes
u
j

where j < i. Since the upward and down-
ward passes are each feedforward, and the down-
ward nodes do not influence any upward nodes,
the combined up-down network is also feedfor-
ward. This ensures that we can efficiently com-
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Riley et al., 2006), which can be difficult to re-
cover from surface level features. Consider the
implicit discourse relation between the following
two sentences (also shown in Figure 1a):

(1) Bob gave Tina the burger.
She was hungry.

While a connector like because seems appropriate
here, there is little surface information to signal
this relationship, unless the model has managed to
learn a bilexical relationship between burger and
hungry. Learning all such relationships from an-
notated data — including the relationship of hun-
gry to knish, pierogie, pupusa etc — would require
far more data than can possibly be annotated.
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Are we done?

I
Bob gave Tina the

burger.

I She was hungry.

I
Bob gave Tina the

burger.

I He was hungry.

The discourse relations are completely di↵erent.
The distributed representations are nearly identical.

hungry

burger

Bob Tina

gave

she
was

the
he

hip://www.cc.gatech.edu/~jeisenst/papers/nips-­‐2014-­‐workshop-­‐slides.pdf	




One vector is not enough.
If we insist on representing each discourse argument
as a single vector, we lose the ability to track
references across the discourse.

Or to put it another way...

You can't cram the meaning 
of a whole %&!$# sentence 
into a single $&!#* vector!

hip://www.cc.gatech.edu/~jeisenst/papers/nips-­‐2014-­‐workshop-­‐slides.pdf	
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Entity-augmented distributed semantics

Look at things from Tina’s perspective:
I s1: She got the burger from Bob
I s2: She was hungry

Let’s represent these Tina-centric meanings with
more vectors!
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Abstract

Discourse relations bind smaller linguistic
units into coherent texts. Automatically
identifying discourse relations is difficult,
because it requires understanding the se-
mantics of the linked arguments. A more
subtle challenge is that it is not enough to
represent the meaning of each argument
of a discourse relation, because the rela-
tion may depend on links between lower-
level components, such as entity mentions.
Our solution computes distributed mean-
ing representations for each discourse ar-
gument by composition up the syntactic
parse tree. We also perform a downward
compositional pass to capture the mean-
ing of coreferent entity mentions. Implicit
discourse relations are then predicted from
these two representations, obtaining sub-
stantial improvements on the Penn Dis-
course Treebank.

1 Introduction

The high-level organization of text can be char-
acterized in terms of discourse relations between
adjacent spans of text (Knott, 1996; Mann, 1984;
Webber et al., 1999). Identifying these relations
has been shown to be relevant to tasks such as
summarization (Louis et al., 2010a; Yoshida et al.,
2014), sentiment analysis (Somasundaran et al.,
2009), coherence evaluation (Lin et al., 2011), and
question answering (Jansen et al., 2014). While
the Penn Discourse Treebank (PDTB) now pro-
vides a large dataset annotated for discourse re-
lations (Prasad et al., 2008), the automatic identi-
fication of implicit relations is a difficult task, with
state-of-the-art performance at roughly 40% (Lin
et al., 2009).

One reason for this poor performance is that dis-
course relations are rooted in semantics (Forbes-
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Riley et al., 2006), which can be difficult to re-
cover from surface level features. Consider the
implicit discourse relation between the following
two sentences (also shown in Figure 1a):

(1) Bob gave Tina the burger.
She was hungry.

While a connector like because seems appropriate
here, there is little surface information to signal
this relationship, unless the model has managed to
learn a bilexical relationship between burger and
hungry. Learning all such relationships from an-
notated data — including the relationship of hun-
gry to knish, pierogie, pupusa etc — would require
far more data than can possibly be annotated.
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Notation Explanation

`(i), r(i) left and right children of i
⇢(i), s(i) parent and sibling of i
A(m,n) set of aligned entities between argu-

ments m and n
Y set of discourse relations
y⇤ gold discourse relation
 (y) decision function
u upward vector
d downward vector
Ay classification parameter associated with

upward vectors
By classification parameter associated with

downward vectors
U composition operator in upward com-

position procedure
V composition operator in downward

composition procedure
L(✓) objective function

Table 1: Table of notation

2.1 Upward pass: argument semantics
Distributed representations for discourse argu-
ments are computed in a feed-forward “upward”
pass: each non-terminal in the binarized syntactic
parse tree has a K-dimensional vector represen-
tation that is computed from the representations of
its children, bottoming out in pre-trained represen-
tations of individual words.

We follow the Recursive Neural Network
(RNN) model of Socher et al. (2011). For a given
parent node i, we denote the left child as `(i), and
the right child as r(i); we compose their represen-
tations to obtain,

u
i

= tanh
�
U[u

`(i);ur(i)]
�
, (1)

where tanh (·) is the element-wise hyperbolic tan-
gent function (Pascanu et al., 2012), and U 2
RK⇥2K is the upward composition matrix. We ap-
ply this compositional procedure from the bottom
up, ultimately obtaining the argument-level repre-
sentation u0. The base case is found at the leaves
of the tree, which are set equal to pre-trained word
vector representations. For example, in the second
sentence of Figure 1, we combine the word repre-
sentations of was and hungry to obtain u(r)

1 , and
then combine u(r)

1 with the word representation of
she to obtain u(r)

0 . Note that the upward pass is
feedforward, meaning that there are no cycles and
all nodes can be computed in linear time.

2.2 Downward pass: entity semantics
As seen in the contrast between Examples 1 and 2,
a model that uses a bottom-up vector representa-

tion for each discourse argument would find lit-
tle to distinguish between she was hungry and he
was hungry. It would therefore almost certainly
fail to identify the correct discourse relation for at
least one of these cases, which requires tracking
the roles played by the entities that are coreferent
in each pair of sentences. To address this issue,
we augment the representation of each argument
with additional vectors, representing the seman-
tics of the role played by each coreferent entity
in each argument. For example, in (1a), Tina got
the burger, and in (1b), she was hungry. Rather
than represent this information in a logical form
— which would require robust parsing to a logi-
cal representation — we represent it through addi-
tional distributed vectors.

The role of a constituent i can be viewed as a
combination of information from two neighboring
nodes in the parse tree: its parent ⇢(i), and its sib-
ling s(i). We can make a downward pass, comput-
ing the downward vector d

i

from the downward
vector of the parent d

⇢(i), and the upward vector
of the sibling u

s(i):

d
i

= tanh
�
V[d

⇢(i);us(i)]
�
, (2)

where V 2 RK⇥2K is the downward composition
matrix. The base case of this recursive procedure
occurs at the root of the parse tree, which is set
equal to the upward representation, d0 , u0. This
procedure is illustrated in Figure 1b: for Tina, the
parent node is d(`)

2 , and the sibling is u(`)
3 .

This up-down compositional algorithm propa-
gates sentence-level distributed semantics back to
entity mentions. The representation of each men-
tion’s role in the sentence is based on the corre-
sponding role of the parent node in the parse tree,
and on the internal meaning representation of the
sibling node, which is computed by upward com-
position. Note that this algorithm is designed to
maintain the feedforward nature of the neural net-
work, so that we can efficiently compute all nodes
without iterating. Each downward node d

i

influ-
ences only other downward nodes d

j

where j > i,
meaning that the downward pass is feedforward.
The upward node is also feedforward: each up-
ward node u

i

influences only other upward nodes
u
j

where j < i. Since the upward and down-
ward passes are each feedforward, and the down-
ward nodes do not influence any upward nodes,
the combined up-down network is also feedfor-
ward. This ensures that we can efficiently com-
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units into coherent texts. Automatically
identifying discourse relations is difficult,
because it requires understanding the se-
mantics of the linked arguments. A more
subtle challenge is that it is not enough to
represent the meaning of each argument
of a discourse relation, because the rela-
tion may depend on links between lower-
level components, such as entity mentions.
Our solution computes distributed mean-
ing representations for each discourse ar-
gument by composition up the syntactic
parse tree. We also perform a downward
compositional pass to capture the mean-
ing of coreferent entity mentions. Implicit
discourse relations are then predicted from
these two representations, obtaining sub-
stantial improvements on the Penn Dis-
course Treebank.

1 Introduction

The high-level organization of text can be char-
acterized in terms of discourse relations between
adjacent spans of text (Knott, 1996; Mann, 1984;
Webber et al., 1999). Identifying these relations
has been shown to be relevant to tasks such as
summarization (Louis et al., 2010a; Yoshida et al.,
2014), sentiment analysis (Somasundaran et al.,
2009), coherence evaluation (Lin et al., 2011), and
question answering (Jansen et al., 2014). While
the Penn Discourse Treebank (PDTB) now pro-
vides a large dataset annotated for discourse re-
lations (Prasad et al., 2008), the automatic identi-
fication of implicit relations is a difficult task, with
state-of-the-art performance at roughly 40% (Lin
et al., 2009).

One reason for this poor performance is that dis-
course relations are rooted in semantics (Forbes-
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Figure 1: Distributed representations are com-
puted through composition over the parse.

Riley et al., 2006), which can be difficult to re-
cover from surface level features. Consider the
implicit discourse relation between the following
two sentences (also shown in Figure 1a):

(1) Bob gave Tina the burger.
She was hungry.

While a connector like because seems appropriate
here, there is little surface information to signal
this relationship, unless the model has managed to
learn a bilexical relationship between burger and
hungry. Learning all such relationships from an-
notated data — including the relationship of hun-
gry to knish, pierogie, pupusa etc — would require
far more data than can possibly be annotated.
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Learning During learning, we used AdaGrad
(Duchi et al., 2011) to tune the learning rate in
each iteration. To avoid the exploding gradient
problem (Bengio et al., 1994), we used the norm
clipping trick proposed by Pascanu et al. (2012),
fixing the norm threshold at ⌧ = 5.0.

Hyperparameters Our model includes three
tunable hyperparameters: the latent dimension
K for the distributed representation, the regu-
larization parameter �, and the initial learning
rate ⌘. All hyperparameters are tuned by ran-
domly selecting a development set of 20% of
the training data. We consider the values K 2
{20, 30, 40, 50, 60} for the latent dimensionality,
� 2 {0.0002, 0.002, 0.02, 0.2} for the regular-
ization (on each training instance), and ⌘ 2
{0.01, 0.03, 0.05, 0.09} for the learning rate. We
assign separate regularizers and learning rates to
the upward composition model, downward com-
position model, feature model and the classifica-
tion model with composition vectors.

Initialization All the classification parameters
are initialized to 0. For the composition param-
eters, we follow Bengio (2012) and initialize U
and V with uniform random values drawn from
the range [�

p
6/2K,

p
6/2K].

Word representations We trained a word2vec
model (Mikolov et al., 2013) on the PDTB corpus,
standardizing the induced representations to zero-
mean, unit-variance (LeCun et al., 2012). Exper-
iments with pre-trained GloVe word vector repre-
sentations (Pennington et al., 2014) gave broadly
similar results.

Syntactic structure Our model requires that the
syntactic structure for each argument is repre-
sented as a binary tree. We run the Stanford
parser (Klein and Manning, 2003) to obtain con-
stituent parse trees of each sentence in the PDTB,
and binarize all resulting parse trees. Argument
spans in the Penn Discourse Treebank need not be
sentences or syntactic constituents: they can in-
clude multiple sentences, non-constituent spans,
and even discontinuous spans (Prasad et al., 2008).
In all cases, we identify the syntactic subtrees
within the argument span, and unify them in a right
branching superstructure.

Coreference The impact of entity semantics on
discourse relation detection is inherently limited
by two factors: (1) the frequency with which the

Dataset Annotation Training (%) Test (%)

1. PDTB Automatic 27.4 29.1
2. PDTB\Onto Automatic 26.2 32.3
3. PDTB\Onto Gold 40.9 49.3

Table 2: Proportion of relations with coreferent
entities, according to automatic coreference reso-
lution and gold coreference annotation.

arguments of a discourse relation share corefer-
ent entity mentions, and (2) the ability of au-
tomated coreference resolution systems to detect
these coreferent mentions. To extract entities and
their mentions from the PDTB, we ran the Berke-
ley coreference system (Durrett and Klein, 2013)
on each document. For each argument pair, we
simply ignore the non-corefential entity mentions.
Line 1 in Table 2 shows the proportion of the in-
stances with shared entities in the PDTB training
and test data, as detected by the Berkeley system.
As the system does not detect coreferent mentions
in more than 70% of the cases, the performance
improvements offered by distributed entity seman-
tics are therefore limited. To determine whether
this low rate of coreference is an intrinsic prop-
erty of the data, or whether it is due to the qual-
ity of state-of-the-art coreference resolution, we
also consider the gold coreference annotations in
the OntoNotes corpus (Pradhan et al., 2007), a
portion of which intersects with the PDTB (597
documents). Lines 2 and 3 of Table 2 give the
statistics for automatic and gold coreference on
this intersection. These results indicate that with
perfect coreference resolution, the applicability of
distributed entity semantics would reach 40% of
the training set and nearly 50% of the test set.
Thus, improvements in coreference resolution can
be expected to yield further improvements in the
effectiveness of distributed entity semantics for
discourse relation detection.

Additional features We supplement our classi-
fication model using additional surface features
proposed by Lin et al. (2009). These include four
categories: word pair features, constituent parse
features, dependency parse features, and contex-
tual features. As done in this prior work, we use
mutual information to select features in the first
three categories, obtaining 500 word pair features,
100 constituent features, and 100 dependency fea-
tures. In addition, Rutherford and Xue (2014) dis-
covered that replacing word pair with their Brown
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pute all u
i

and d
i

in time that is linear in the
length of the input. In Section 7.2, we compare
our approach with recent related work on alterna-
tive two-pass distributed compositional models.

Connection to the inside-outside algorithm
In the inside-outside algorithm for computing
marginal probabilities in a probabilistic context-
free grammar (Lari and Young, 1990), the inside
scores are constructed in a bottom-up fashion, like
our upward nodes; the outside score for node i is
constructed from a product of the outside score
of the parent ⇢(i) and the inside score of the sib-
ling s(i), like our downward nodes. The stan-
dard inside-outside algorithm sums over all pos-
sible parse trees, but since the parse tree is ob-
served in our case, a closer analogy would be to
the constrained version of the inside-outside algo-
rithm for latent variable grammars (Petrov et al.,
2006). Cohen et al. (2014) describe a tensor for-
mulation of the constrained inside-outside algo-
rithm; similarly, we could compute the downward
vectors by a tensor contraction of the parent and
sibling vectors (Smolensky, 1990; Socher et al.,
2014). However, this would involve K3 parame-
ters, rather than the K2 parameters in our matrix-
vector composition.

3 Predicting discourse relations

To predict the discourse relation between an argu-
ment pair (m,n), the decision function is a sum of
bilinear products,

 (y) = (u(m)
0 )>A

y

u(n)
0

+
X

i,j2A(m,n)

(d(m)
i

)>B
y

d(n)
j

+ b
y

, (3)

where A
y

2 RK⇥K and B
y

2 RK⇥K are the clas-
sification parameters for relation y. A scalar b

y

is
used as the bias term for relation y, and A(m,n) is
the set of coreferent entity mentions shared by the
argument pair (m,n). The decision value  (y) of
relation y is therefore based on the upward vec-
tors at the root, u(m)

0 and u(n)
0 , as well as on

the downward vectors for each pair of aligned en-
tity mentions. For the cases where there are no
coreferent entity mentions between two sentences,
A(m,n) = ?, the classification model considers
only the upward vectors at the root.

To avoid overfitting, we apply a low-
dimensional approximation to each A

y

,

A
y

= a
y,1a

>
y,2 + diag(a

y,3). (4)

The same approximation is also applied to each
B

y

, reducing the number of classification parame-
ters from 2⇥#|Y|⇥K2 to 2⇥#|Y|⇥ 3K.

Surface features Prior work has identified a
number of useful surface-level features (Lin et al.,
2009), and the classification model can easily be
extended to include them. Defining �(m,n) as the
vector of surface features extracted from the ar-
gument pair (m,n), the corresponding decision
function is modified as,

 (y) = (u(m)
0 )

>Ayu
(n)
0 +

X

i,j2A(m,n)

(d(m)
i )

>Byd
(n)
j

+ �>
y �(m,n) + by,

(5)
where �

y

is the classification weight on surface
features for relation y. We describe these features
in Section 5.

4 Large-margin learning framework

There are two sets of parameters to be
learned: the classification parameters
✓
class

= {A
y

,B
y

,�
y

, b
y

}
y2Y , and the com-

position parameters ✓
comp

= {U,V}. We use
pre-trained word representations, and do not
update them. While prior work shows that it can
be advantageous to retrain word representations
for discourse analysis (Ji and Eisenstein, 2014),
our preliminary experiments found that updating
the word representations led to serious overfitting
in this model.

Following Socher et al. (2011), we define
a large margin objective, and use backpropa-
gation to learn all parameters of the network
jointly (Goller and Kuchler, 1996). Learning is
performed using stochastic gradient descent (Bot-
tou, 1998), so we present the learning problem for
a single argument pair (m,n) with the gold dis-
course relation y⇤. The objective function for this
training example is a regularized hinge loss,

L(✓) =
X

y0:y0 6=y⇤

max

⇣
0, 1�  (y⇤

) +  (y0
)

⌘
+ �||✓||22

(6)
where ✓ = ✓

class

[ ✓
comp

is the set of learning
parameters. The regularization term �||✓||22 indi-
cates that the squared values of all parameters are
penalized by �; this corresponds to penalizing the
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for discourse analysis (Ji and Eisenstein, 2014),
our preliminary experiments found that updating
the word representations led to serious overfitting
in this model.

Following Socher et al. (2011), we define
a large margin objective, and use backpropa-
gation to learn all parameters of the network
jointly (Goller and Kuchler, 1996). Learning is
performed using stochastic gradient descent (Bot-
tou, 1998), so we present the learning problem for
a single argument pair (m,n) with the gold dis-
course relation y⇤. The objective function for this
training example is a regularized hinge loss,

L(✓) =
X

y0:y0 6=y⇤

max

⇣
0, 1�  (y⇤

) +  (y0
)

⌘
+ �||✓||22

(6)
where ✓ = ✓

class

[ ✓
comp

is the set of learning
parameters. The regularization term �||✓||22 indi-
cates that the squared values of all parameters are
penalized by �; this corresponds to penalizing the
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Experiment	

•  Dataset	
  

–  Corpus:	
  Penn	
  Discourse	
  Treebank	
  [Prasad+	
  2008]	
  
–  Training:	
  sec:ons	
  2-­‐20,	
  tes:ng:	
  sec:ons	
  21-­‐22	
  
–  Rela:ons:	
  second-­‐level	
  discourse	
  rela:ons	
  (16	
  class)	
  

•  Learning	
  
–  Learning	
  rate:	
  tuned	
  with	
  AdaGrad	
  [Duchi+	
  2011]	
  
–  Ini:aliza:on:	
  θclass	
  =>	
  0,	
  θcomp	
  =>	
  random	
  ([-­‐sqrt(6/2K),	
  sqrt(6/2K)])	
  

•  Word	
  rep.	
  
–  word2vec	
  [Mikolov+	
  2013]-­‐based	
  vectors	
  trained	
  on	
  PDTB	
  

(not	
  updated	
  during	
  learning)	
  
•  Parsers	
  

–  Syntac:c	
  parser:	
  Stanford	
  parser	
  [Klein	
  &	
  Manning	
  2003]	
  
–  Coreference:	
  Berkeley	
  coreference	
  system	
  [Durrei	
  &	
  Klein	
  2013]	
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Results	

Model +Entity semantics +Surface features K Accuracy(%)

Baseline models
1. Most common class 26.03
2. Additive word representations 50 28.73

Prior work
3. (Lin et al., 2009) X 40.2

Our work
4. Surface features + Brown clusters X 40.66

5. DISCO2 50 36.98
6. DISCO2 X 50 37.63
7. DISCO2 X 50 43.75⇤

8. DISCO2 X X 50 44.59⇤
⇤ signficantly better than lines 3 and 4 with p < 0.05

Table 3: Experimental results on multiclass classification of level-2 discourse relations. The results of
Lin et al. (2009) are shown in line 3. We reimplemented this system and added the Brown cluster features
of Rutherford and Xue (2014), with results shown in line 4.

of second-level implicit discourse relations is
from Lin et al. (2009), who apply feature se-
lection to obtain a set of lexical and syntactic
features over the arguments.

Surface features + Brown clusters To get a
more precise comparison, we reimplemented
the system of Lin et al. (2009). The major
differences are (1) we apply our online
learning framework, rather than batch clas-
sification, and (2) we include the Brown
cluster features described in Section 5 and
originally proposed by Rutherford and Xue
(2014).

Compositional Finally, we report results for the
method described in this paper. Since it is
a distributional compositional approach to
discourse relations, we name it DISCO2.

6.1.2 Results

Table 3 presents results for multiclass identifica-
tion of second-level PDTB relations. As shown
in lines 7 and 8, DISCO2 outperforms both base-
line systems and the prior state-of-the-art (line 3).
The strongest performance is obtained by includ-
ing the entity distributed semantics, with a 4.4%
improvement over the accuracy reported by Lin et
al. (2009) (p < .05 by a binomial test). We also
obtain a significant improvement over the Sur-
face Feature + Brown Cluster model. Because
we have reimplemented this system, we can ob-

serve individual predictions, and can therefore use
the sign test for statistical significance, again find-
ing that DISCO2 is significantly better (p < .05).
Even without entity semantics, DISCO2 signifi-
cantly outperforms these competitive models from
prior work. However, the surface features remain
important, as the performance of DISCO2 is sub-
stantially worse when only the distributed repre-
sentation is included. The latent dimension K is
chosen from a development set (see Section 5), as
shown in Figure 3.

The multiclass evaluation introduced by Lin et
al. (2009) focused on classification of implicit re-
lations. Another question is whether it is possi-
ble to identify entity-based coherence, annotated
in the PDTB as ENTREL, which is when a shared
entity is the only meaningful relation that holds
between two sentences (Prasad et al., 2008). As
suggested by a reviewer, we add ENTREL to the
set of possible relations, and perform an additional
evaluation. Since this setting has not previously
been considered, we cannot evaluate against pub-
lished results; instead, we retrain and evaluate the
following models:

• the surface feature baseline with Brown clus-
ters, corresponding to line 4 of Table 3;

• DISCO2 with surface features but without en-
tity semantics, corresponding to line 7 of Ta-
ble 3;
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(a)	
  DISCO2	
  outperforms	
  state-­‐of-­‐the-­‐art	
  
(b)	
  Coref.	
  en:ty-­‐centric	
  vector	
  helped	
  
	
  	
  	
  	
  	
  	
  (considering	
  all	
  pairs	
  of	
  NPs:	
  42.14%)	


(a)	


(b)	




Sensi:vity	
  of	
  K	


337

15	




Improved	
  examples	

(3) Arg 1: The drop in profit reflected, in part,

continued softness in financial advertising
at [The Wall Street Journal] and Barron’s
magazine.
Arg 2: Ad linage at [the Journal] fell
6.1% in the third quarter.

(4) Arg 1: [Mr. Greenberg] got out just
before the 1987 crash and, to [his] re-
gret, never went back even as the market
soared.
Arg 2: This time [he]’s ready to buy in
“when the panic wears off.”

(5) Arg 1: Half of [them]1 are really scared
and want to sell but [I]2’m trying to talk
them out of it.
Arg 2: If [they]1 all were bullish, [I]2’d
really be upset.
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CONTRAST	
  
(w/o	
  ent.	
  =>	
  CONJUNCTION)	


CONTRAST	
  
(w/o	
  ent.	
  =>	
  CONJUNCTION)	


RESTATEMENT	
  
(w/o	
  ent.	
  =>	
  CAUSE)	
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Conclusions	


•  Vector	
  representa:on	
  of	
  discourse	
  segment	
  
pair	
  needs	
  to	
  be	
  carefully	
  designed	
  

•  One	
  vector	
  is	
  not	
  enough;	
  adding	
  en:ty-­‐
centric	
  informa:on	
  leads	
  to	
  significant	
  
performance	
  improvement	
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