One Vector is Not Enough: Entity-Augmented Distributed Semantics for Discourse Relations

Yangfeng Ji and Jacob Eisenstein

School of Interactive Computing Georgia Institute of Technology {jiyfeng, jacobe}@gatech.edu

> Presenter: Naoya Inoue (Tohoku University)

Implicit discourse relation recognition

 Identify *implicit* discourse relation (=not signaled by discourse connective) between two discourse segments

- This work focuses on Penn Discourse Treebank (PDTB)-style structure [Prasad+ 2008]
 - rel(arg1, arg2)
 - c.f. Rhetorical Structure Theory (RST) [Mann & Thompson 1988]; etc.

Research questions

- How do we learn long-tailed bi-lexical relationship?
 e.g., hungry -- {burger, onigiri, pizza, pasta, steak, ...}
 - => Use vector-based representation of discourse segments
- How do we represent discourse segment as vector?
 Recursive composition (e.g., Socher+ 2011)? チッチッチッ:
 - (1) Bob gave Tina the burger. REASON She was hungry. (because)
 - (2) Bob gave Tina the burger. He was hungry. (although)
 - Segment pairs are superficially similar, but have totally different (opposite) relation...

Idea: entity-centric vector rep.

Vector of discourse segment pair =

(Previous work)

Coreferent entity vector

Discourse	(1) Bob gave Tina the burger.	(2) Bob gave Tina the burger.
segments	She was hungry.	He was hungry.
Sentence vec.	vec(Bob gave Tina the burger) cec(She was hungry)	vec(Bob gave Tina the burger) vec(He was hungry)
Coref. entity	vec(Tina got the burger from Bob)	vec(Bob gave Tina the burger)
vector	vec(Tina was hungry)	vec(Bob was hungry)

The overall framework

- Given: two discourse segments *m*, *n*
- **Output:** discourse relation *y*
- Decision function ψ is defined as follows:

(a) (b)

$$\psi(y) = (\boldsymbol{u}_{0}^{(m)})^{\top} \mathbf{A}_{y} \boldsymbol{u}_{0}^{(n)} + \sum_{i,j \in \mathcal{A}(m,n)} (\boldsymbol{d}_{i}^{(m)})^{\top} \mathbf{B}_{y} \boldsymbol{d}_{j}^{(n)} + \boldsymbol{\beta}_{y}^{\top} \boldsymbol{\phi}_{(m,n)} + \boldsymbol{b}_{y},$$
(c)

(a) ... segment semantics: sentence vectors $u_0^{(m)}$ and $u_0^{(n)}$, parameter \mathbf{A}_y (b) ... coref. entity semantics: entity vectors $d_i^{(m)}$ and $d_j^{(n)}$, parameter \mathbf{B}_y (c) ... surface features: feature vector $\varphi_{(m,n)}$, parameter $\boldsymbol{\beta}y$

Segment semantics: upward comp.

- Follow Recursive Neural Network-based sentence composition approach [Socher+ 2011]
- Sentence (upward) vector u_0 is recursively composed over parse tree

$$\boldsymbol{u}_i = \tanh\left(\mathbf{U}[\boldsymbol{u}_{\ell(i)}; \boldsymbol{u}_{r(i)}]\right),$$

l(*i*): left child of *i r*(*i*): right child of *I* **U**: upward comp. matrix

Are we done?

 Bob gave Tina the burger. Bob gave Tina the burger.

► **She** was hungry.

► **He** was hungry.

The discourse relations are completely different. The distributed representations are nearly identical.

One vector is not enough.

If we insist on representing each discourse argument as a single vector, we lose the ability to track references across the discourse.

Or to put it another way...

Entity-augmented distributed semantics

(1) Bob gave Tina the burger. She was hungry.

Look at things from Tina's perspective:

- ▶ *s*1: She got the burger from Bob
- ► *s*2: She was hungry

Let's represent these Tina-centric meanings with more vectors!

Entity semantics: downward comp.

- Tracking "roles" played by coreferent entities
- Entity (downward) vector d_i is recursively computed by up-down compositional algorithm based on its parent and sibling

$$d_{i} = \tanh\left(\mathbf{V}[d_{\rho(i)}; u_{s(i)}]\right)$$

$$p(i): \text{ parent of } i$$

$$s(i): \text{ sibling of } i$$

$$\mathbf{V}: \text{ downward comp. matrix}$$

$$d_{0}^{(\ell)}$$

$$gave \rightarrow d_{2}^{(\ell)}$$

$$d_{0}^{(r)}$$

$$d_{0}^{(r)}$$

$$fina \leftarrow u_{3}^{(\ell)}$$

$$fina \leftarrow u_{1}^{(r)}$$

10

Are there so many discourse segment pairs with coreferent entities in PDTB?

Dataset	Annotation	Training (%)	Test (%)
 PDTB PDTB∩Onto PDTB∩Onto 	Automatic	27.4	29.1
	Automatic	26.2	32.3
	Gold	40.9	49.3

Table 2: Proportion of relations with coreferent entities, according to automatic coreference resolution and gold coreference annotation.

(Coref resolver: Berkeley coreference system [Durrett & Klein 2013])

Learning framework

• Parameter reduction of $\mathbf{A}_y, \mathbf{B}_y$

-
$$A_y = a_{y,1}a_{y,2}^{\top} + \text{diag}(a_{y,3})$$
. (| y |K² => | y |3K)

- Large-margin learning framework
 - Learned parameters: $\theta = \theta_{class} \cup \theta_{comp}$

•
$$\theta_{class} = \{\mathbf{A}_y, \mathbf{B}_y, \boldsymbol{\beta}_y, \boldsymbol{b}_y\}$$

- $\theta_{comp} = \{\mathbf{U}, \mathbf{V}\}$
- Objective function [Socher+ 2011]:
 - Minimize regularized hinge loss:

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{y': y' \neq y^*} \max\left(0, 1 - \psi(y^*) + \psi(y')\right) + \lambda ||\boldsymbol{\theta}||_2^2$$

Experiment

- Dataset
 - Corpus: Penn Discourse Treebank [Prasad+ 2008]
 - Training: sections 2-20, testing: sections 21-22
 - Relations: second-level discourse relations (16 class)
- Learning
 - Learning rate: tuned with AdaGrad [Duchi+ 2011]
 - Initialization: $\theta_{class} \Rightarrow 0$, $\theta_{comp} \Rightarrow random ([-sqrt(6/2K), sqrt(6/2K)])$
- Word rep.
 - word2vec [Mikolov+ 2013]-based vectors trained on PDTB (not updated during learning)
- Parsers
 - Syntactic parser: Stanford parser [Klein & Manning 2003]
 - Coreference: Berkeley coreference system [Durrett & Klein 2013]

Results

Model	+Entity semantics	+Surface features	K	Accuracy(%)	
Baseline models 1. Most common class			-0	26.03	
2. Additive word representations			50	28.73	
<i>Prior work</i> 3. (Lin et al., 2009)		\checkmark		40.2 (a 1
<i>Our work</i> 4. Surface features + Brown clusters		\checkmark		40.66	
5. disco2 6. disco2	\checkmark		50 50	36.98 37.63 (b)	
7. disco2 8. disco2	\checkmark	\checkmark	50 50	43.75* (0) 44.59* 4	

 * significantly better than lines 3 and 4 with p < 0.05

(a) DISCO2 outperforms state-of-the-art(b) Coref. entity-centric vector helped(considering all pairs of NPs: 42.14%)

Sensitivity of K

Improved examples

(3) Arg 1: The drop in profit reflected, in part, continued softness in financial advertising at [The Wall Street Journal] and Barron's magazine.
Arg 2: Ad linage at [the Journal] fell 6.1% in the third quarter.

```
RESTATEMENT
(w/o ent. => CAUSE)
```

(4) **Arg 1**: [Mr. Greenberg] got out just before the 1987 crash and, to [his] regret, never went back even as the market soared.

Arg 2: *This time [he]'s ready to buy in "when the panic wears off."*

(5) Arg 1: Half of [them]₁ are really scared and want to sell but [I]₂'m trying to talk them out of it.
Arg 2: If [they]₁ all were bullish, [I]₂'d really be upset.

CONTRAST (w/o ent. => CONJUNCTION)

```
CONTRAST
(w/o ent. => CONJUNCTION)
```

Conclusions

 Vector representation of discourse segment pair needs to be carefully designed

 One vector is not enough; adding entitycentric information leads to significant performance improvement