Model-Based Word Embeddings from Decompositions of Count Matrices

Karl Stratos, Michael Collins, Daniel Hsu

担当:村岡雅康(M2) 乾・岡崎研究室 東北大学大学院 情報科学研究科

モチベーション

 [Levy&Goldberg14]: skip-gram[Mikolov+13]は
 postive PMI(PPMI)に変換された共起行列の分解 と等価

· Question: 他の優れた変換って何かないの?

本研究の概要

CCA(Canonical Correlation Analysis)[Hotelling, 1936]で
 次元圧縮するときに行う変換を拡張した手法を提案

 similarity, analogy, NERのタスクでskip-gramと comparableな結果

Outline

- CCAによる次元圧縮
- Brownモデルによる拡張
- テンプレートの導入
- 実験

CCA(Canonical Correlation Analysis)とは

- 2つのベクトル(X,Y)を次元圧縮する方法 - 今回の入力は単語&文脈ベクトル
- 特徴:2つのベクトル(X, Y)間の相関ができるだけ 高くなるような空間に射影
- 冗長な次元が削減された空間
- 射影するための行列(A, B)を学習する必要あり

SVDによる解法

• SVD(Singular Value Decompositon)を使った解法 [Hottelling,1936]で厳密解が求まる SVDによる分解

相関行列: $\Omega \in \mathbb{R}^{d \times d'}$ $\Omega := (\mathbf{E}[XX^{\top}] - \mathbf{E}[X]\mathbf{E}[X]^{\top})^{-1/2}$ $(\mathbf{E}[XY^{\top}] - \mathbf{E}[X]\mathbf{E}[Y]^{\top})$ $\overline{\text{SVD}}$ $(\mathbf{E}[YY^{\top}] - \mathbf{E}[Y]\mathbf{E}[Y]^{\top})^{-1/2}$ $(\mathbf{E}[YY^{\top}] - \mathbf{E}[Y]\mathbf{E}[Y]^{\top})^{-1/2}$ $X \ge Y O 表現を工夫するこ \ge \overline{C}$

XとYの衣呪を上大9るこ 簡略化できる

単語/文脈のone-hot表現

- ... Whatever our souls are made of ...
- $(x^{(i)}, y^{(i)}) = (\mathcal{I}_{souls}, \mathcal{I}_{our}), \quad (\mathcal{I}_{souls}, \mathcal{I}_{are})$
- ・サンプル数→大のとき、平均→0 $\hat{\Omega} \approx \hat{\mathbf{E}} \begin{bmatrix} XX^{\top} \end{bmatrix}^{-1/2} \hat{\mathbf{E}} \begin{bmatrix} XY^{\top} \end{bmatrix} \hat{\mathbf{E}} \begin{bmatrix} YY^{\top} \end{bmatrix}^{-1/2}$ 対角行列 $\hat{\Omega}_{w,c} = \frac{\operatorname{count}(w,c)}{\sqrt{\operatorname{count}(w) \times \operatorname{count}(c)}}$

既存研究

• [Dhillon+11;12]

$$\hat{\Omega}_{w,c} = \frac{\operatorname{count}(w,c)^{1/2}}{\sqrt{\operatorname{count}(w)^{1/2} \times \operatorname{count}(c)^{1/2}}}$$

- 1/2は経験的(empirical)な理由
- 本研究ではブラウンモデル[Brown+1992]を使って理論的な 裏付けを行う

Outline

- CCAによる次元圧縮
- ・Brownモデルによる拡張
- テンプレートの導入
- 実験

ブラウンモデル[Brown+1992]

- 隠れ状態に制約のあるHMM
- 制約(ブラウン仮定):各単語には高々1個の隠れ状態
- ⇒ 出力行列Oの各行は1要素以外全てゼロ ただし, $O_{w,h} = o(w|h)$
- 正規化することで隠れ状態数だけクラスタができる

回転&スケールしても表現力は同じ

• $\overline{O} := \operatorname{diag}(s_1) O^{\langle a \rangle} \operatorname{diag}(s_2) Q^{\top}$ - $s_1, [s_2 > 0 を満たすベクトル]$ - $O^{\langle a \rangle} : 要素ごとに指数乗した出力行列$

- *Q*:任意の直交(変換)行列

定理

- $a \neq 0$. \hat{U} : $\hat{\Omega}_{w,c}^{\langle a \rangle}$ の左特異値ベクトル $\hat{\Omega}_{w,c}^{\langle a \rangle} = \frac{\operatorname{count}(w,c)^{a}}{\sqrt{\operatorname{count}(w)^{a} \times \operatorname{count}(c)^{a}}}$
- サンプル数が大きいとき $\hat{U} \to O^{\langle a/2 \rangle} \mathrm{diag}(s) Q^{\top}$
- (証明) Appendix A および[Stratos+14]を参照
- 主張: (回転&スケールされた) Oを用いれば任意のa
 を選ぶことができる!

a = 1/2が最適

- 根拠:
 - 単語の出現は多項分布に従うと仮定
 - これはそれぞれ独立なポアソン分布と等価
 - ポアソン分布の2乗根は分散安定な変換[Bartlett, 1936]

$$X \sim \mathsf{Poisson}(np)$$
$$\mathsf{Var}(X^{1/2}) \rightarrow \mathbf{1/4} \quad (n \rightarrow \infty)$$

分散安定のうれしさ

- SVDの目的関数:重みなし二乗誤差
 - 分散不均一データに関してはsuboptimal

$\min_{u_w,v_c} \sum_{w,c} \left(\Omega_{w,c}^{\langle a \rangle} - u_w^\top v_c \right)^2$

• 分散で重み付けられた二乗誤差[Aitken,1936] 😅

$$\min_{u_{w},v_{c}} \sum_{w,c} \frac{1}{\operatorname{Var}\left(\Omega_{w,c}^{\langle \boldsymbol{a} \rangle}\right)} \left(\Omega_{w,c}^{\langle \boldsymbol{a} \rangle} - u_{w}^{\top} v_{c}\right)^{2}$$

- これだと一般的にintractable[Srebro+03]
- でも今は定数で近似できる!😅

Outline

- CCAによる次元圧縮
- Brownモデルによる拡張
- ・テンプレートの導入
- 実験

SVDモデル(テンプレート)

- 入力:共起頻度count(w, c),次元m,変換t,スケールs
 - $\operatorname{count}(w) := \sum_c \operatorname{count}(w, c)$
 - $\mathsf{count}(c) := \sum_w \mathsf{count}(w,c)$
- 出力:m次元の単語ベクトルv(w)
- 1.頻度の変換

2.スケール

3.SVD: $\hat{\Omega} \approx \hat{U}\hat{\Sigma}\hat{V}^{\top} \longrightarrow v(w) = \hat{U}_w/||\hat{U}_w||$

SVDモデル(提案手法)

- 入力:共起頻度count(w, c), 次元m, 変換sqrt, スケールcca
 - $\operatorname{count}(w) := \sum_c \operatorname{count}(w, c)$
 - $\mathsf{count}(c) := \sum_w \mathsf{count}(w,c)$
- 出力:m次元の単語ベクトルv(w)

1.頻度の変換 $count(w,c) \leftarrow \sqrt{count(w,c)} \ count(w) \leftarrow \sqrt{count(w)}$ $count(c) \leftarrow \sqrt{count(c)}$

2.スケール

$$\hat{\Omega}_{w,c} = \frac{\operatorname{count}(w,c)}{\sqrt{\operatorname{count}(w) \times \operatorname{count}(c)}}$$

3.SVD:
$$\hat{\Omega} \approx \hat{U}\hat{\Sigma}\hat{V}^{\top} \longrightarrow v(w) = \hat{U}_w / \left| \left| \hat{U}_w \right| \right|$$

SVDモデル[Levy&Goldberg14]

- 入力:共起頻度count(w, c),次元m,変換なし,スケールppmi
 - $\operatorname{count}(w) := \sum_c \operatorname{count}(w, c)$
 - $\mathsf{count}(c) := \sum_w \mathsf{count}(w,c)$
- 出力:m次元の単語ベクトルv(w)

1.頻度の変換 $count(w,c) \leftarrow count(w,c)$ $count(w) \leftarrow count(w)$ $count(c) \leftarrow count(c)$

2.スケール

$$\hat{\Omega}_{w,c} = \max\left(0, \log \frac{\operatorname{count}(w,c) \times \sum_{w,c} \operatorname{count}(w,c)}{\operatorname{count}(w) \times \operatorname{count}(c)}\right)$$
3.SVD: $\hat{\Omega} \approx \hat{U}\hat{\Sigma}\hat{V}^{\top} \longrightarrow v(w) = \hat{U}_w / \left\| \hat{U}_w \right\|$

SVDモデル[Peninngton+14]

- 入力:共起頻度count(w, c),次元m,変換log,スケールなし
 - $\operatorname{count}(w) := \sum_c \operatorname{count}(w, c)$
 - $\mathsf{count}(c) := \sum_w \mathsf{count}(w,c)$
- 出力:m次元の単語ベクトルv(w)
- 1.頻度の変換

$$\mathsf{count}(w,c) \leftarrow \log(1 + \mathsf{count}(w,c))$$

2.スケール

$$\hat{\Omega}_{w,c} = \operatorname{count}(w,c)$$
3.SVD: $\hat{\Omega} \approx \hat{U} \hat{\Sigma} \hat{V}^{\top} \longrightarrow v(w) = \hat{U}_w / \left\| \hat{U}_w \right\|$

Outline

- CCAによる次元圧縮
- Brownモデルによる拡張
- テンプレートの導入
- ・実験

- コーパス: English Wikipedia (1.4 billion words)
- 評価タスク
 - Word similarity: 人手のスコアとのスピアマン相関

 (money, cash) → 9.08, (king, cabbage) → 0.23
 (money, cash) → 9.08, (king, cabbage) → 0.23
 - Word analogy: Beijing : China ~ Tokyo : ?
 - NER (CoNLL 2003): embeddingを素性として使用
- 外部モデル
 - GLOVE [Pennington+14]
 - CBOW, SKIP [Mikolov+13]
 - ハイパーパラメータはデフォルト

結果: Word similarity

• 1000次元

提案手法(sqrt/cca)が圧勝

結果:Word analogy

• 1000次元

結果: NER (CoNLL 2003)

30次元, Brown clustering(BROWN)は1000クラスタ
 *数値はF1

SVDモデル(中央)がBROWN, SKIPを上回る

まとめ

- 共起行列の成分をCCAを用いて変換する手法を提案
 - その拡張としてブラウンモデルを取り入れた
- SVDモデルのテンプレートを導入した
- similarity, analogy, NERのタスクでskip-gramと comparableな結果

Appendixes

- ・ ある目的関数を最大化するように単語/文脈ベクト ルを学習: $(v_w, v_c) = \operatorname*{arg\,max}_{u,v} J(u, v)$
- その内積は共起頻度のPPMIである[Levy&Goldberg14]

分散不均一性

予備実験(a の影響)

Template of SVD model

SPECTRAL-TEMPLATE

Input: word-context co-occurrence counts #(w, c), dimension m, transformation method t, scaling method s, context smoothing exponent $\alpha \leq 1$, singular value exponent $\beta \leq 1$ **Output**: vector $v(w) \in \mathbb{R}^m$ for each word $w \in [n]$ **Definitions**: $\#(w) := \sum_c \#(w, c), \ \#(c) := \sum_w \#(w, c), \ N(\alpha) := \sum_c \#(c)^{\alpha}$

1. Transform all #(w, c), #(w), and #(c):

$$\#(\cdot) \leftarrow \begin{cases} \#(\cdot) & \text{if } t = - \\ \log(1 + \#(\cdot)) & \text{if } t = \log \\ \#(\cdot)^{2/3} & \text{if } t = \text{two-thirds} \\ \sqrt{\#(\cdot)} & \text{if } t = \text{sqrt} \end{cases}$$

2. Scale statistics to construct a matrix $\Omega \in \mathbb{R}^{n \times n}$:

$$\Omega_{w,c} \leftarrow \begin{cases} \#(w,c) & \text{if } s = -\\ \frac{\#(w,c)}{\#(w)} & \text{if } s = \text{reg} \end{cases}$$
$$\Omega_{w,c} \leftarrow \begin{cases} \max\left(\log\frac{\#(w,c)N(\alpha)}{\#(w)\#(c)^{\alpha}}, 0\right) & \text{if } s = \text{ppmi} \end{cases}$$
$$\frac{\#(w,c)}{\sqrt{\#(w)\#(c)^{\alpha}}}\sqrt{\frac{N(\alpha)}{N(1)}} & \text{if } s = \text{cca} \end{cases}$$

- 3. Perform rank-*m* SVD on $\Omega \approx U\Sigma V^{\top}$ where $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_m)$ is a diagonal matrix of ordered singular values $\sigma_1 \geq \cdots \geq \sigma_m \geq 0$.
- 4. Define $v(w) \in \mathbb{R}^m$ to be the *w*-th row of $U\Sigma^{\beta}$ normalized to have unit 2-norm.

Performance of SVD model

Configuration		500 dimensions			1000 dimensions		
Transform (t)	Scale (s)	AVG-SIM	SYN	MIXED	AVG-SIM	SYN	MIXED
		0.514	31.58	28.39	0.522	29.84	32.15
sqrt		0.656	60.77	65.84	0.646	57.46	64.97
log		0.669	59.28	66.86	0.672	55.66	68.62
	reg	0.530	29.61	36.90	0.562	32.78	37.65
sqrt	reg	0.625	63.97	67.30	0.638	65.98	70.04
	ppmi	0.638	41.62	58.80	0.665	47.11	65.34
sqrt	cca	0.678	66.40	74.73	0.690	65.14	77.70

- Word similarity: 13 anotators
 - ex) (money, cash, 9.08), (king, cabbage, 0.23)
- Word analogy: [Levy&Goldberg'14]
 - a:b~c:x
 - $\underset{x \in V \setminus \{a,b,c\}}{\operatorname{argmax}} \cos(x, c) * \cos(x, b) / (\cos(x, a) + \varepsilon)$