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モチベーション
• [Levy&Goldberg14]: skip-gram[Mikolov+13]は

postive PMI(PPMI)に変換された共起行列の分解
と等価 

• Question: 他の優れた変換って何かないの？
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本研究の概要

• CCA(Canonical Correlation Analysis)[Hotelling, 1936]で
次元圧縮するときに行う変換を拡張した手法を提案 

• similarity, analogy, NERのタスクでskip-gramと
comparableな結果
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Outline
• CCAによる次元圧縮
• Brownモデルによる拡張 
• テンプレートの導入 
• 実験
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CCA(Canonical Correlation Analysis)とは

• 2つのベクトル(X, Y)を次元圧縮する方法 
- 今回の入力は単語&文脈ベクトル 

• 特徴：2つのベクトル(X, Y)間の相関ができるだけ
高くなるような空間に射影 

• 冗長な次元が削減された空間 

• 射影するための行列(A, B)を学習する必要あり
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SVDによる解法
• SVD(Singular Value Decompositon)を使った解法

[Hottelling,1936]で厳密解が求まる
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Exact Solution via Singular Value Decomposition (SVD)

Theorem. (Hotelling, 1936) Define correlation matrix ⌦ 2 Rd⇥d0 :

⌦ :=

�
E[XX>

]� E[X]E[X]

>��1/2

�
E[XY >

]� E[X]E[Y ]

>�

�
E[Y Y >

]� E[Y ]E[Y ]

>��1/2

Let (ui, vi) be the left/right singular vectors of ⌦ corresponding

to the i-th largest singular value. Then

ai =
�
E[XX>

]� E[X]E[X]

>��1/2
ui

bi =
�
E[Y Y >

]� E[Y ]E[Y ]

>��1/2
vi
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相関行列：

SVD

XとYの表現を工夫することで 
簡略化できる

A Proof of Theorem 4.1

We first define some random variables. Let ⇢ be
the number of left/right context words to consider
in CCA. Let (W1, . . . ,WN ) 2 [n]

N be a random
sequence of words drawn from the Brown model
where N � 2⇢ + 1, along with the correspond-
ing sequence of hidden states (H1, . . . ,HN ) 2
[m]

N . Independently, pick a position I 2 [⇢ +

1, N � ⇢] uniformly at random; pick an integer
J 2 [�⇢, ⇢]\{0} uniformly at random. Define
B 2 Rn⇥n, u, v 2 Rn, ⇡̃ 2 Rm, and ˜T 2 Rm⇥m

as follows:

Bw,c := P (WI = w, WI+J = c) 8w, c 2 [n]

uw := P (WI = w) 8w 2 [n]

vc := P (WI+J = c) 8c 2 [n]

⇡̃h := P (HI = h) 8h 2 [m]

˜Th0,h := P (HI+J = h0|HI = h) 8h, h0 2 [m]

First, we show that ⌦

hai has a particular structure
under the Brown assumption. For the choice of
positive vector s 2 Rm in the theorem, we define
sh := (

P
w o(w|h)

a
)

�1/2 for all h 2 [m].
Lemma A.1. ⌦

hai
= A⇥

>
where ⇥ 2 Rn⇥m

has

rank m and A 2 Rn⇥m
is defined as:

A := diag(O⇡̃)

�a/2Ohai
diag(⇡̃)

a/2
diag(s)

Proof. Let ˜O := O ˜T . It can be algebraically
verified that B = Odiag(⇡̃)

˜O>, u = O⇡̃, and
v =

˜O⇡̃. By Assumption 4.1, each entry of Bhai

has the form

Bhai
w,c =

0

@
X

h2[m]

Ow,h ⇥ ⇡̃h ⇥ ˜Oc,h

1

A
a

=

⇣
Ow,H(w) ⇥ ⇡̃H(w) ⇥ ˜Oc,H(w)

⌘a

= Oa
w,H(w) ⇥ ⇡̃a

H(w) ⇥ ˜Oa
c,H(w)

=

X

h2[m]

Oa
w,h ⇥ ⇡̃a

h ⇥ ˜Oa
c,h

Thus Bhai
= Ohaidiag(⇡̃)

a
(

˜Ohai
)

>. Therefore,

⌦

hai
=

⇣
diag(u)

�1/2Bdiag(v)

�1/2
⌘hai

= diag(u)

�a/2Bhaidiag(v)

�a/2

= diag(O⇡̃)

�a/2Ohaidiag(⇡̃)

a/2diag(s)

diag(s)�1diag(⇡̃)

a/2
(

˜Ohai
)

>diag(

˜O⇡̃)

�a/2

This gives the desired result.

Next, we show that the left component of ⌦

hai

is in fact the emission matrix O up to (nonzero)
scaling and is furthermore orthonormal.
Lemma A.2. The matrix A in Lemma A.1 has the

expression A = Oha/2i
diag(s) and has orthonor-

mal columns.

Proof. By Assumption 4.1, each entry of A is sim-
plified as follows:

Aw,h =

o(w|h)

a ⇥ ⇡̃a/2
h ⇥ sh

o(w|H(w))

a/2 ⇥ ⇡̃a/2
H(w)

= o(w|h)

a/2 ⇥ sh

This proves the first part of the lemma. Note that:

[A>A]h,h0
=

⇢
s2
h ⇥

P
w o(w|h)

a if h = h0

0 otherwise

Thus our choice of s gives A>A = Im⇥m.

Proof of Theorem 4.1. With Lemma A.1 and A.2,
the proof is similar to the proof of Theorem 5.1 in
Stratos et al. (2014).
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Template: PPMI (Levy and Goldberg, 2014)

Input: count(w, c), dimension m, t = —, s = ppmi

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

count(w, c) count(w, c) count(w) count(w)

count(c) count(c)

2. Scale counts to construct matrix ˆ

⌦

ˆ

⌦w,c = max

✓
0, log

count(w, c)⇥
P

w,c count(w, c)

count(w)⇥ count(c)

◆

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���
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SVDによる分解
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単語/文脈のone-hot表現
• … Whatever our souls are made of … 

•             =   
• サンプル数→大のとき，平均→0

7

Two Views of a Word: Word & Context

Extract samples of (X,Y ) := (word, context) from a corpus:

. . . Whatever our souls are made of . . .

#
(Isouls, Iour) (Isouls, Iare)

where Ii is an indicator vector for i

Need to perform singular value decomposition (SVD) on

ˆ

⌦ =

⇣
ˆE[XX>

]� ˆE[X]

ˆE[X]

>
⌘�1/2

⇣
ˆE[XY >

]� ˆE[X]

ˆE[Y ]

>
⌘

⇣
ˆE[Y Y >

]� ˆE[Y ]

ˆE[Y ]

>
⌘�1/2

2011). To see why, let {(x(i), y(i)
)}N

i=1 be N sam-
ples of X and Y . Consider the sample estimate of
the term E[XY >

]� E[X]E[Y ]

>:

1

N

NX

i=1

x(i)
(y(i)

)

> � 1

N2

 
NX

i=1

x(i)

! 
NX

i=1

y(i)

!>

The first term dominates the expression when N is
large. This is indeed the setting in this task where
the number of samples (word-context pairs in a
corpus) easily tends to billions.

Observation 2. The (uncentered) covariance
matrices E[XX>

] and E[Y Y >
] are diagonal.

This follows from our definition of the word
and context variables as one-hot encodings since
E[XwXw0

] = 0 for w 6= w0 and E[YcYc0
] = 0 for

c 6= c0.

With these observations and the binary definition
of (X,Y ), each entry in ⌦ now has a simple
closed-form solution:

⌦w,c =

P (Xw = 1, Yc = 1)p
P (Xw = 1)P (Yc = 1)

(4)

which can be readily estimated from a corpus.

4 Using CCA for parameter estimation

In a less well-known interpretation of Eq. (4),
CCA is seen as a parameter estimation algorithm
for a language model (Stratos et al., 2014). This
model is a restricted class of HMMs introduced by
Brown et al. (1992), henceforth called the Brown
model. In this section, we extend the result of
Stratos et al. (2014) and show that its correctness
is preserved under certain element-wise data trans-
formations.

4.1 Clustering under a Brown model
A Brown model is a 5-tuple (n, m,⇡, t, o) for
n, m 2 N and functions ⇡, t, o where

• [n] is a set of word types.

• [m] is a set of hidden states.

• ⇡(h) is the probability of generating h 2 [m]

in the first position of a sequence.

• t(h0|h) is the probability of generating h0 2
[m] given h 2 [m].

• o(w|h) is the probability of generating w 2
[n] given h 2 [m].

Importantly, the model makes the following addi-
tional assumption:

Assumption 4.1 (Brown assumption). For each

word type w 2 [n], there is a unique hidden state

H(w) 2 [m] such that o(w|H(w)) > 0 and

o(w|h) = 0 for all h 6= H(w).

In other words, this model is an HMM in which
observation states are partitioned by hidden states.
Thus a sequence of N words w1 . . . wN 2 [n]

N

has probability ⇡(H(w1))⇥
QN

i=1 o(wi|H(wi))⇥QN�1
i=1 t(H(wi+1)|H(wi)).
An equivalent definition of a Brown model is

given by organizing the parameters in matrix form.
Under this definition, a Brown model has param-
eters (⇡, T,O) where ⇡ 2 Rm is a vector and
T 2 Rm⇥m, O 2 Rn⇥m are matrices whose en-
tries are set to:

⇡h = ⇡(h) h 2 [m]

Th0,h = t(h0|h) h, h0 2 [m]

Ow,h = o(w|h) h 2 [m], w 2 [n]

Our main interest is in obtaining some represen-
tations of word types that allow us to identify their
associated hidden states under the model. For this
purpose, representing a word by the correspond-
ing row of O is sufficient. To see this, note that
each row of O must have a single nonzero entry
by Assumption 4.1. Let v(w) 2 Rm be the w-
th row of O normalized to have unit 2-norm: then
v(w) = v(w0

) iff H(w) = H(w0
). See Figure 1(a)

for illustration.
A crucial aspect of this representational scheme

is that its correctness is invariant to scaling and
rotation. In particular, clustering the normalized
rows of diag(s)Ohaidiag(s2)Q> where Ohai is
any element-wise power of O with any a 6= 0,
Q 2 Rm⇥m is any orthogonal transformation, and
s1 2 Rn and s2 2 Rm are any positive vectors
yields the correct clusters under the model. See
Figure 1(b) for illustration.

4.2 Spectral estimation
Thus we would like to estimate O and use its rows
for representing word types. But the likelihood
function under the Brown model is non-convex,
making an MLE estimation of the model param-
eters difficult. However, the hard-clustering as-
sumption (Assumption 4.1) allows for a simple
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,

Simplified Correlation Matrix

When the number of samples is large, the means tend to zero:

ˆ

⌦ ⇡ ˆE
⇥
XX>⇤�1/2

ˆE
⇥
XY >⇤

ˆE
⇥
Y Y >⇤�1/2

I.e., decompose the following transformed counts!

ˆ

⌦w,c =
count(w, c)p

count(w)⇥ count(c)

Simplified Correlation Matrix

When the number of samples is large, the means tend to zero:

ˆ

⌦ ⇡ ˆE
⇥
XX>⇤�1/2

ˆE
⇥
XY >⇤

ˆE
⇥
Y Y >⇤�1/2

I.e., decompose the following transformed counts!

ˆ

⌦w,c =
count(w, c)p

count(w)⇥ count(c)

対角行列 対角行列
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既存研究
• [Dhillon+11;12] 

• 1/2は経験的(empirical)な理由 

• 本研究ではブラウンモデル[Brown+1992]を使って理論的な
裏付けを行う

8

Previous Work Using CCA for Word Embeddings

I Dhillon et al. (2011, 2012) propose various modifications of

CCA, but take the square root of counts,

ˆ

⌦w,c =
count(w, c)1/2p

count(w)1/2 ⇥ count(c)1/2

I The square root was taken for empirical reasons.

I We now provide a model-based interpretation that naturally
admits this extra transformation.
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Outline
• CCAによる次元圧縮 

• Brownモデルによる拡張
• テンプレートの導入 
• 実験
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ブラウンモデル[Brown+1992]
• 隠れ状態に制約のあるHMM 
• 制約(ブラウン仮定)：各単語には高々1個の隠れ状態 

• ⇒ 出力行列　の各行は1要素以外全てゼロ 

• 正規化することで隠れ状態数だけクラスタができる

10

Definition of the “Brown Model” (Brown et al., 1992)

Parameters: same as HMMs

⇡(h) = probability of state h starting a sequence

t(h0|h) = probability of transitioning from state h to state h0

o(w|h) = probability of word w under state h

Assumption: every word w has a single possible state h

I Define emission matrix O where Ow,h = o(w|h)

I Rows of O can be seen as state-revealing word embeddings

Osmile =
⇥
0.3 0.0

⇤
Ofrown =

⇥
0.0 0.25

⇤

Ogrin =

⇥
0.7 0.0

⇤
Ocringe =

⇥
0.0 0.75

⇤

Definition of the “Brown Model” (Brown et al., 1992)

Parameters: same as HMMs

⇡(h) = probability of state h starting a sequence

t(h0|h) = probability of transitioning from state h to state h0

o(w|h) = probability of word w under state h

Assumption: every word w has a single possible state h

I Define emission matrix O where Ow,h = o(w|h)

I Rows of O can be seen as state-revealing word embeddings

Osmile =
⇥
0.3 0.0

⇤
Ofrown =

⇥
0.0 0.25

⇤

Ogrin =

⇥
0.7 0.0

⇤
Ocringe =

⇥
0.0 0.75

⇤

ただし,

1

1

smile

grin

frown

cringe

1

1

smile

grin

frown

cringe

smile

grin

frown

cringe

smile

grin

frown

cringe

(a) (b)

Figure 1: Visualization of the representational scheme under a Brown model with 2 hidden states. (a)
Normalizing the original rows of O. (b) Normalizing the scaled and rotated rows of O.

spectral method for consistent parameter estima-
tion of O.

To state the theorem, we define an additional
quantity. Let ⇢ be the number of left/right context
words to consider in CCA. Let (H1, . . . ,HN ) 2
[m]

N be a random sequence of hidden states
drawn from the Brown model where N � 2⇢ + 1.
Independently, pick a position I 2 [⇢ + 1, N � ⇢]

uniformly at random. Define ⇡̃ 2 Rm where
⇡̃h := P (HI = h) for each h 2 [m].
Theorem 4.1. Assume ⇡̃ > 0 and rank(O) =

rank(T ) = m. Assume that a Brown model

(⇡, T, O) generates a sequence of words. Let

X,Y 2 Rn
be one-hot encodings of words and

their associated context words. Let U 2 Rn⇥m

be the matrix of m left singular vectors of ⌦

hai 2
Rn⇥n

corresponding to nonzero singular values

where ⌦ is defined in Eq. (4) and a 6= 0:

⌦

hai
w,c =

P (Xw = 1, Yc = 1)

a

p
P (Xw = 1)

aP (Yc = 1)

a

Then there exists an orthogonal matrix Q 2
Rm⇥m

and a positive s 2 Rm
such that U =

Oha/2i
diag(s)Q>

.

This theorem states that the CCA projection of
words in Section 3.3 is the rows of O up to scaling
and rotation even if we raise each element of ⌦ in
Eq. (4) to an arbitrary (nonzero) power. The proof
is a variant of the proof in Stratos et al. (2014) and
is given in Appendix A.

4.3 Choice of data transformation
Given a corpus, the sample estimate of ⌦

hai is
given by:

ˆ

⌦

hai
w,c =

#(w, c)a

p
#(w)

a
#(c)a

(5)

where #(w, c) denotes the co-occurrence count of
word w and context c in the corpus, #(w) :=

P
c #(w, c), and #(c) :=

P
w #(w, c). What

choice of a is beneficial and why? We use a = 1/2

for the following reason: it stabilizes the variance
of the term and thereby gives a more statistically
stable solution.

4.3.1 Variance stabilization for word counts
The square-root transformation is a variance-

stabilizing transformation for Poisson random
variables (Bartlett, 1936; Anscombe, 1948). In
particular, the square-root of a Poisson variable
has variance close to 1/4, independent of its mean.

Lemma 4.1 (Bartlett (1936)). Let X be a random

variable with distribution Poisson(n ⇥ p) for any

p 2 (0, 1) and positive integer n. Define Y :=p
X . Then the variance of Y approaches 1/4 as

n!1.

This transformation is relevant for word counts
because they can be naturally modeled as Pois-
son variables. Indeed, if word counts in a corpus
of length N are drawn from a multinomial distri-
bution over [n] with N observations, then these
counts have the same distribution as n indepen-
dent Poisson variables (whose rate parameters are
related to the multinomial probabilities), condi-
tioned on their sum equaling N (Steel, 1953). Em-
pirically, the peaky concentration of a Poisson dis-
tribution is well-suited for modeling word occur-
rences.

4.3.2 Variance-weighted squared-error
minimization

At the heart of CCA is computing the SVD of the
⌦

hai matrix: this can be interpreted as solving the
following (non-convex) squared-error minimiza-
tion problem:

min

uw,vc2Rm

X

w,c

⇣
⌦

hai
w,c � u>wvc

⌘2

1285

ここに
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回転&スケールしても表現力は同じ
•   

-    ,　  > 0 を満たすベクトル 
- 　   ：要素ごとに指数乗した出力行列 
-    ：任意の直交(変換)行列
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Normalizing the original rows of O. (b) Normalizing the scaled and rotated rows of O.
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N be a random sequence of hidden states
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words in Section 3.3 is the rows of O up to scaling
and rotation even if we raise each element of ⌦ in
Eq. (4) to an arbitrary (nonzero) power. The proof
is a variant of the proof in Stratos et al. (2014) and
is given in Appendix A.
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Given a corpus, the sample estimate of ⌦
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given by:

ˆ
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(5)

where #(w, c) denotes the co-occurrence count of
word w and context c in the corpus, #(w) :=

P
c #(w, c), and #(c) :=

P
w #(w, c). What

choice of a is beneficial and why? We use a = 1/2

for the following reason: it stabilizes the variance
of the term and thereby gives a more statistically
stable solution.

4.3.1 Variance stabilization for word counts
The square-root transformation is a variance-

stabilizing transformation for Poisson random
variables (Bartlett, 1936; Anscombe, 1948). In
particular, the square-root of a Poisson variable
has variance close to 1/4, independent of its mean.

Lemma 4.1 (Bartlett (1936)). Let X be a random

variable with distribution Poisson(n ⇥ p) for any

p 2 (0, 1) and positive integer n. Define Y :=p
X . Then the variance of Y approaches 1/4 as

n!1.

This transformation is relevant for word counts
because they can be naturally modeled as Pois-
son variables. Indeed, if word counts in a corpus
of length N are drawn from a multinomial distri-
bution over [n] with N observations, then these
counts have the same distribution as n indepen-
dent Poisson variables (whose rate parameters are
related to the multinomial probabilities), condi-
tioned on their sum equaling N (Steel, 1953). Em-
pirically, the peaky concentration of a Poisson dis-
tribution is well-suited for modeling word occur-
rences.

4.3.2 Variance-weighted squared-error
minimization

At the heart of CCA is computing the SVD of the
⌦

hai matrix: this can be interpreted as solving the
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Using the Scaled, Rotated Rows of O as Word Embeddings

Suppose we had O := diag(s1)Ohaidiag(s2)Q> where

I s1 and s2 are any positive vectors

I Ohai is an element-wise power of O with any a 6= 0

I Q is any orthogonal matrix

Normalized rows of O have the same representational power as
normalized rows of O!
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定理
•                ：　   の左特異値ベクトル 

• サンプル数が大きいとき 

• (証明) Appendix A および[Stratos+14]を参照 

• 主張：(回転&スケールされた)　を用いれば任意の　　
を選ぶことができる！
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CCA for Estimating O up to Scaling and Rotation

Theorem. Pick any a 6= 0. Let ˆU be the top m left singular

vectors of ˆ⌦hai where

ˆ

⌦

hai
w,c =

count(w, c)ap
count(w)a ⇥ count(c)a

Then as the sample size grows:

ˆU ! Oha/2i
diag(s)Q>

for some s > 0 and orthogonal Q

Proof. Extension of Stratos et al. (2014)
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   　　が最適
• 根拠： 

- 単語の出現は多項分布に従うと仮定 
- これはそれぞれ独立なポアソン分布と等価 
- ポアソン分布の2乗根は分散安定な変換[Bartlett,1936] 
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Choosing the Value of a

So we can choose any a 6= 0, what should it be?

One answer: a = 1/2

Why?

I Assume word counts drawn from a multinomial distribution

I Equivalent to drawing from independent Poisson distributions
(conditioned on the length of the corpus)

I Square-root is a variance-stabilizing transformation for
Poisson random variables (Bartlett, 1936):

X ⇠ Poisson(np)

Var(X1/2
) ! 1/4 as n ! 1
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分散安定のうれしさ
• SVDの目的関数：重みなし二乗誤差 

- 分散不均一データに関してはsuboptimal 

• 分散で重み付けられた二乗誤差[Aitken,1936]! 

• これだと一般的にintractable[Srebro+03]" 

• でも今は定数で近似できる！!
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Why does Variance Stabilization Help?

SVD minimizes unweighted squared-error loss:

min

uw,vc

X

w,c

⇣
⌦

hai
w,c � u>wvc

⌘2

But minimizing variance-weighted squared-error loss is more
statistically e�cient (Aitken, 1936):

min

uw,vc

X

w,c

1

Var
⇣
⌦

hai
w,c

⌘
⇣
⌦

hai
w,c � u>wvc

⌘2

Generally intractable (Srebro et al., 2003)

Using a = 1/2 makes Var
⇣
⌦

hai
w,c

⌘
approximately constant and

removes the need for explicit variance weighting!
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Outline
• CCAによる次元圧縮 

• Brownモデルによる拡張 
• テンプレートの導入
• 実験

15
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SVDモデル(テンプレート)
• 入力：共起頻度count(w, c), 次元m, 変換t, スケールs 

-   
-   

• 出力：m次元の単語ベクトルv(w) 

1.頻度の変換 

2.スケール 

3.SVD: 

16

Template
Input: count(w, c), dimension m, transform t, scaling s

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

2. Scale counts to construct matrix ˆ

⌦

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���

Template: PPMI (Levy and Goldberg, 2014)

Input: count(w, c), dimension m, t = —, s = ppmi

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

count(w, c) count(w, c) count(w) count(w)

count(c) count(c)

2. Scale counts to construct matrix ˆ

⌦

ˆ

⌦w,c = max

✓
0, log

count(w, c)⇥
P

w,c count(w, c)

count(w)⇥ count(c)

◆

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���

Template: CCA with Square-Root (this work)

Input: count(w, c), dimension m, t = sqrt, s = cca

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

count(w, c) 
p
count(w, c) count(w) 

p
count(w)

count(c) 
p
count(c)

2. Scale counts to construct matrix ˆ

⌦

ˆ

⌦w,c =
count(w, c)p

count(w)⇥ count(c)

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���
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SVDモデル(提案手法)
• 入力：共起頻度count(w, c), 次元m, 変換sqrt, スケールcca 

-   
-   

• 出力：m次元の単語ベクトルv(w) 

1.頻度の変換 

2.スケール 

3.SVD: 

17
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⌦

ˆ

⌦w,c =
count(w, c)p

count(w)⇥ count(c)

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���

Template: CCA with Square-Root (this work)

Input: count(w, c), dimension m, t = sqrt, s = cca

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

count(w, c) 
p
count(w, c) count(w) 

p
count(w)

count(c) 
p
count(c)

2. Scale counts to construct matrix ˆ

⌦

ˆ

⌦w,c =
count(w, c)p

count(w)⇥ count(c)

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���
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SVDモデル[Levy&Goldberg14]
• 入力：共起頻度count(w, c), 次元m, 変換なし, スケールppmi 

-   
-   

• 出力：m次元の単語ベクトルv(w) 

1.頻度の変換 

2.スケール 

3.SVD: 
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Template
Input: count(w, c), dimension m, transform t, scaling s

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

2. Scale counts to construct matrix ˆ

⌦

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���

Template: PPMI (Levy and Goldberg, 2014)

Input: count(w, c), dimension m, t = —, s = ppmi

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

count(w, c) count(w, c) count(w) count(w)

count(c) count(c)

2. Scale counts to construct matrix ˆ

⌦

ˆ

⌦w,c = max

✓
0, log

count(w, c)⇥
P

w,c count(w, c)

count(w)⇥ count(c)

◆

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���

Template: CCA with Square-Root (this work)

Input: count(w, c), dimension m, t = sqrt, s = cca

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

count(w, c) 
p
count(w, c) count(w) 

p
count(w)

count(c) 
p
count(c)

2. Scale counts to construct matrix ˆ

⌦

ˆ

⌦w,c =
count(w, c)p

count(w)⇥ count(c)

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���

Template: PPMI (Levy and Goldberg, 2014)

Input: count(w, c), dimension m, t = —, s = ppmi

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

count(w, c) count(w, c) count(w) count(w)

count(c) count(c)

2. Scale counts to construct matrix ˆ

⌦

ˆ

⌦w,c = max

✓
0, log

count(w, c)⇥
P

w,c count(w, c)

count(w)⇥ count(c)

◆

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���

Template: PPMI (Levy and Goldberg, 2014)

Input: count(w, c), dimension m, t = —, s = ppmi

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

count(w, c) count(w, c) count(w) count(w)

count(c) count(c)

2. Scale counts to construct matrix ˆ

⌦

ˆ

⌦w,c = max

✓
0, log

count(w, c)⇥
P

w,c count(w, c)

count(w)⇥ count(c)

◆

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���

Template: PPMI (Levy and Goldberg, 2014)

Input: count(w, c), dimension m, t = —, s = ppmi

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

count(w, c) count(w, c) count(w) count(w)

count(c) count(c)

2. Scale counts to construct matrix ˆ

⌦

ˆ

⌦w,c = max

✓
0, log

count(w, c)⇥
P

w,c count(w, c)

count(w)⇥ count(c)

◆

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���
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SVDモデル[Peninngton+14]
• 入力：共起頻度count(w, c), 次元m, 変換log, スケールなし 

-   
-   

• 出力：m次元の単語ベクトルv(w) 

1.頻度の変換 

2.スケール 

3.SVD: 
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Template
Input: count(w, c), dimension m, transform t, scaling s

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

2. Scale counts to construct matrix ˆ

⌦

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���

Template: PPMI (Levy and Goldberg, 2014)

Input: count(w, c), dimension m, t = —, s = ppmi

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

count(w, c) count(w, c) count(w) count(w)

count(c) count(c)

2. Scale counts to construct matrix ˆ

⌦

ˆ

⌦w,c = max

✓
0, log

count(w, c)⇥
P

w,c count(w, c)

count(w)⇥ count(c)

◆

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���

Template: CCA with Square-Root (this work)

Input: count(w, c), dimension m, t = sqrt, s = cca

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

count(w, c) 
p
count(w, c) count(w) 

p
count(w)

count(c) 
p
count(c)

2. Scale counts to construct matrix ˆ

⌦

ˆ

⌦w,c =
count(w, c)p

count(w)⇥ count(c)

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���

Template: No Scaling (Pennington et al., 2014)

Input: count(w, c), dimension m, t = log, s = —

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

count(w, c) log(1 + count(w, c))

2. Scale counts to construct matrix ˆ

⌦

ˆ

⌦w,c = count(w, c)

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���

Template: No Scaling (Pennington et al., 2014)

Input: count(w, c), dimension m, t = log, s = —

I count(w) :=
P

c count(w, c)
I count(c) :=

P
w count(w, c)

Output: embedding v(w) 2 Rm for each word w

1. Transform counts

count(w, c) log(1 + count(w, c))

2. Scale counts to construct matrix ˆ

⌦

ˆ

⌦w,c = count(w, c)

3. Do rank-m SVD on ˆ

⌦ ⇡ ˆU ˆ

⌃

ˆV > and let v(w) = ˆUw/
���
��� ˆUw

���
���
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Outline
• CCAによる次元圧縮 

• Brownモデルによる拡張 
• テンプレートの導入 
• 実験

20
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実験
• コーパス：English Wikipedia (1.4 billion words) 
• 評価タスク 

- Word similarity: 人手のスコアとのスピアマン相関 

- Word analogy: Beijing : China ~ Tokyo : ? 
- NER (CoNLL 2003): embeddingを素性として使用 

• 外部モデル 
- GLOVE [Pennington+14] 
- CBOW, SKIP [Mikolov+13] 
‣ ハイパーパラメータはデフォルト

21

‣ (money, cash) → 9.08, (king, cabbage) → 0.23
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結果：Word similarity
• 1000次元

22

0.50 0.55 0.60 0.65 0.70

0.641
0.509

0.586
0.69

0.637
0.635

提案手法(sqrt/cca)が圧勝

*数値はスピアマン相関係数

log/スケールなし
変換なし/ppmi

(提案手法)sqrt/cca
GLOVE
CBOW
SKIP
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結果：Word analogy
• 1000次元

23

0.50 0.60 0.70 0.80 0.90

0.834
0.601

0.787
0.777

0.638
0.687log/スケールなし

変換なし/ppmi
(提案手法)sqrt/cca

GLOVE
CBOW
SKIP

SVDモデル(上)内では提案手法(sqrt/cca)がベスト 
全体ではskip-gramが最も良い結果

*数値はAccuracy
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結果：NER (CoNLL 2003)
• 30次元, Brown clustering(BROWN)は1000クラスタ

24

84.00

85.50

87.00

88.50

90.00

88.78
88.34

87.16

89.2889.27
88.8788.75

84.4

*数値はF1

　  log 
スケールなし

変換なし 
ppmi

sqrt/cca
提案手法 GLOVE CBOW SKIPBROWNベースライン

SVDモデル(中央)がBROWN, SKIPを上回る
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まとめ
• 共起行列の成分をCCAを用いて変換する手法を提案 

• その拡張としてブラウンモデルを取り入れた 

• SVDモデルのテンプレートを導入した 

• similarity, analogy, NERのタスクでskip-gramと
comparableな結果

25
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Appendixes
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復習：skip-gram
• ある目的関数を最大化するように単語/文脈ベクト
ルを学習: 

• その内積は共起頻度のPPMIである[Levy&Goldberg14] 
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Motivation: word2vec as Matrix Decomposition

I
word2vec (Mikolov et al., 2013) trains word/context

embeddings by maximizing some objective:

(vw, vc) = argmax

u,v
J(u, v)

I Recently cast as a low-rank decomposition of transformed

co-occurrence counts (Levy and Goldberg, 2014):

v>wvc = f (count(w, c))

I Q. Are there other count transformations whose low-rank
decompositions yield e↵ective word embeddings?

PMI(w, c) = log 0 = �1. Not only is the matrix ill-defined, it is also dense, which is a major
practical issue because of its huge dimensions |VW | ⇥ |VC |. One could smooth the probabilities
using, for instance, a Dirichlet prior by adding a small “fake” count to the underlying counts matrix,
rendering all word-context pairs observed. While the resulting matrix will not contain any infinite
values, it will remain dense.

An alternative approach, commonly used in NLP, is to replace the M

PMI matrix with M

PMI
0 , in

which PMI(w, c) = 0 in cases #(w, c) = 0, resulting in a sparse matrix. We note that MPMI
0 is

inconsistent, in the sense that observed but “bad” (uncorrelated) word-context pairs have a negative
matrix entry, while unobserved (hence worse) ones have 0 in their corresponding cell. Consider for
example a pair of relatively frequent words (high P (w) and P (c)) that occur only once together.
There is strong evidence that the words tend not to appear together, resulting in a negative PMI
value, and hence a negative matrix entry. On the other hand, a pair of frequent words (same P (w)

and P (c)) that is never observed occurring together in the corpus, will receive a value of 0.

A sparse and consistent alternative from the NLP literature is to use the positive PMI (PPMI) metric,
in which all negative values are replaced by 0:

PPMI(w, c) = max (PMI (w, c) , 0) (11)

When representing words, there is some intuition behind ignoring negative values: humans can
easily think of positive associations (e.g. “Canada” and “snow”) but find it much harder to invent
negative ones (“Canada” and “desert”). This suggests that the perceived similarity of two words
is more influenced by the positive context they share than by the negative context they share. It
therefore makes some intuitive sense to discard the negatively associated contexts and mark them
as “uninformative” (0) instead.2 Indeed, it was shown that the PPMI metric performs very well on
semantic similarity tasks [5].

Both M

PMI
0 and M

PPMI are well known to the NLP community. In particular, systematic comparisons
of various word-context association metrics show that PMI, and more so PPMI, provide the best
results for a wide range of word-similarity tasks [5, 16]. It is thus interesting that the PMI matrix
emerges as the optimal solution for SGNS’s objective.

4 Alternative Word Representations

As SGNS with k = 1 is attempting to implicitly factorize the familiar matrix M

PMI, a natural algo-
rithm would be to use the rows of MPPMI directly when calculating word similarities. Though PPMI
is only an approximation of the original PMI matrix, it still brings the objective function very close
to its optimum (see Section 5.1). In this section, we propose two alternative word representations
that build upon M

PPMI.

4.1 Shifted PPMI

While the PMI matrix emerges from SGNS with k = 1, it was shown that different values of k can
substantially improve the resulting embedding. With k > 1, the association metric in the implicitly
factorized matrix is PMI(w, c)� log(k). This suggests the use of Shifted PPMI (SPPMI), a novel
association metric which, to the best of our knowledge, was not explored in the NLP and word-
similarity communities:

SPPMIk(w, c) = max (PMI (w, c)� log k, 0) (12)

As with SGNS, certain values of k can improve the performance of MSPPMIk on different tasks.

4.2 Spectral Dimensionality Reduction: SVD over Shifted PPMI

While sparse vector representations work well, there are also advantages to working with dense low-
dimensional vectors, such as improved computational efficiency and, arguably, better generalization.

2A notable exception is the case of syntactic similarity. For example, all verbs share a very strong negative
association with being preceded by determiners, and past tense verbs have a very strong negative association to
be preceded by “be” verbs and modals.
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I Recently cast as a low-rank decomposition of transformed

co-occurrence counts (Levy and Goldberg, 2014):

v>wvc = f (count(w, c))

I Q. Are there other count transformations whose low-rank
decompositions yield e↵ective word embeddings?CV M・ =

Motivation: word2vec as Matrix Decomposition

I
word2vec (Mikolov et al., 2013) trains word/context

embeddings by maximizing some objective:

(vw, vc) = argmax

u,v
J(u, v)

I Recently cast as a low-rank decomposition of transformed

co-occurrence counts (Levy and Goldberg, 2014):

v>wvc = f (count(w, c))

I Q. Are there other count transformations whose low-rank
decompositions yield e↵ective word embeddings?

Motivation: word2vec as Matrix Decomposition

I
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embeddings by maximizing some objective:

(vw, vc) = argmax
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J(u, v)

I Recently cast as a low-rank decomposition of transformed

co-occurrence counts (Levy and Goldberg, 2014):

v>wvc = f (count(w, c))

I Q. Are there other count transformations whose low-rank
decompositions yield e↵ective word embeddings?

PMI(w, c) = log 0 = �1. Not only is the matrix ill-defined, it is also dense, which is a major
practical issue because of its huge dimensions |VW | ⇥ |VC |. One could smooth the probabilities
using, for instance, a Dirichlet prior by adding a small “fake” count to the underlying counts matrix,
rendering all word-context pairs observed. While the resulting matrix will not contain any infinite
values, it will remain dense.

An alternative approach, commonly used in NLP, is to replace the M

PMI matrix with M

PMI
0 , in

which PMI(w, c) = 0 in cases #(w, c) = 0, resulting in a sparse matrix. We note that MPMI
0 is

inconsistent, in the sense that observed but “bad” (uncorrelated) word-context pairs have a negative
matrix entry, while unobserved (hence worse) ones have 0 in their corresponding cell. Consider for
example a pair of relatively frequent words (high P (w) and P (c)) that occur only once together.
There is strong evidence that the words tend not to appear together, resulting in a negative PMI
value, and hence a negative matrix entry. On the other hand, a pair of frequent words (same P (w)

and P (c)) that is never observed occurring together in the corpus, will receive a value of 0.

A sparse and consistent alternative from the NLP literature is to use the positive PMI (PPMI) metric,
in which all negative values are replaced by 0:

PPMI(w, c) = max (PMI (w, c) , 0) (11)

When representing words, there is some intuition behind ignoring negative values: humans can
easily think of positive associations (e.g. “Canada” and “snow”) but find it much harder to invent
negative ones (“Canada” and “desert”). This suggests that the perceived similarity of two words
is more influenced by the positive context they share than by the negative context they share. It
therefore makes some intuitive sense to discard the negatively associated contexts and mark them
as “uninformative” (0) instead.2 Indeed, it was shown that the PPMI metric performs very well on
semantic similarity tasks [5].

Both M

PMI
0 and M

PPMI are well known to the NLP community. In particular, systematic comparisons
of various word-context association metrics show that PMI, and more so PPMI, provide the best
results for a wide range of word-similarity tasks [5, 16]. It is thus interesting that the PMI matrix
emerges as the optimal solution for SGNS’s objective.

4 Alternative Word Representations

As SGNS with k = 1 is attempting to implicitly factorize the familiar matrix M

PMI, a natural algo-
rithm would be to use the rows of MPPMI directly when calculating word similarities. Though PPMI
is only an approximation of the original PMI matrix, it still brings the objective function very close
to its optimum (see Section 5.1). In this section, we propose two alternative word representations
that build upon M

PPMI.

4.1 Shifted PPMI

While the PMI matrix emerges from SGNS with k = 1, it was shown that different values of k can
substantially improve the resulting embedding. With k > 1, the association metric in the implicitly
factorized matrix is PMI(w, c)� log(k). This suggests the use of Shifted PPMI (SPPMI), a novel
association metric which, to the best of our knowledge, was not explored in the NLP and word-
similarity communities:

SPPMIk(w, c) = max (PMI (w, c)� log k, 0) (12)

As with SGNS, certain values of k can improve the performance of MSPPMIk on different tasks.

4.2 Spectral Dimensionality Reduction: SVD over Shifted PPMI

While sparse vector representations work well, there are also advantages to working with dense low-
dimensional vectors, such as improved computational efficiency and, arguably, better generalization.

2A notable exception is the case of syntactic similarity. For example, all verbs share a very strong negative
association with being preceded by determiners, and past tense verbs have a very strong negative association to
be preceded by “be” verbs and modals.
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PMI(w, c) = log 0 = �1. Not only is the matrix ill-defined, it is also dense, which is a major
practical issue because of its huge dimensions |VW | ⇥ |VC |. One could smooth the probabilities
using, for instance, a Dirichlet prior by adding a small “fake” count to the underlying counts matrix,
rendering all word-context pairs observed. While the resulting matrix will not contain any infinite
values, it will remain dense.

An alternative approach, commonly used in NLP, is to replace the M
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as “uninformative” (0) instead.2 Indeed, it was shown that the PPMI metric performs very well on
semantic similarity tasks [5].

Both M

PMI
0 and M

PPMI are well known to the NLP community. In particular, systematic comparisons
of various word-context association metrics show that PMI, and more so PPMI, provide the best
results for a wide range of word-similarity tasks [5, 16]. It is thus interesting that the PMI matrix
emerges as the optimal solution for SGNS’s objective.

4 Alternative Word Representations

As SGNS with k = 1 is attempting to implicitly factorize the familiar matrix M

PMI, a natural algo-
rithm would be to use the rows of MPPMI directly when calculating word similarities. Though PPMI
is only an approximation of the original PMI matrix, it still brings the objective function very close
to its optimum (see Section 5.1). In this section, we propose two alternative word representations
that build upon M

PPMI.

4.1 Shifted PPMI

While the PMI matrix emerges from SGNS with k = 1, it was shown that different values of k can
substantially improve the resulting embedding. With k > 1, the association metric in the implicitly
factorized matrix is PMI(w, c)� log(k). This suggests the use of Shifted PPMI (SPPMI), a novel
association metric which, to the best of our knowledge, was not explored in the NLP and word-
similarity communities:

SPPMIk(w, c) = max (PMI (w, c)� log k, 0) (12)

As with SGNS, certain values of k can improve the performance of MSPPMIk on different tasks.

4.2 Spectral Dimensionality Reduction: SVD over Shifted PPMI

While sparse vector representations work well, there are also advantages to working with dense low-
dimensional vectors, such as improved computational efficiency and, arguably, better generalization.

2A notable exception is the case of syntactic similarity. For example, all verbs share a very strong negative
association with being preceded by determiners, and past tense verbs have a very strong negative association to
be preceded by “be” verbs and modals.
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予備実験(　の影響)
• 1000次元

31

相
関
係
数
ま
た
は

Ac
cu

ra
cy

0.5

0.575

0.65

0.725

0.8

Category Axis
1/2 2/3 1

0.777
0.74

0.576

0.69
0.65

0.572

CCA for Estimating O up to Scaling and Rotation
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Proof. Extension of Stratos et al. (2014)
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Word similarity

Word analogy
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But we note that minimizing unweighted squared-
error objectives is generally suboptimal when the
target values are heteroscedastic. For instance, in
linear regression, it is well-known that a weighted

least squares estimator dominates ordinary least
squares in terms of statistical efficiency (Aitken,
1936; Lehmann and Casella, 1998). For our set-
ting, the analogous weighted least squares opti-
mization is:

min

uw,vc2Rm

X

w,c

1

Var
⇣
⌦

hai
w,c

⌘
⇣
⌦

hai
w,c � u>wvc

⌘2
(6)

where Var(X) := E[X2
]�E[X]

2. This optimiza-
tion is, unfortunately, generally intractable (Sre-
bro et al., 2003). The square-root transformation,
nevertheless, obviates the variance-based weight-
ing since the target values have approximately the
same variance of 1/4.

5 A template for spectral methods

Figure 2 gives a generic template that encom-
passes a range of spectral methods for deriving
word embeddings. All of them operate on co-
occurrence counts #(w, c) and share the low-rank
SVD step, but they can differ in the data transfor-
mation method (t) and the definition of the matrix
of scaled counts for SVD (s).

We introduce two additional parameters ↵,� 
1 to account for the following details. Mikolov et
al. (2013b) proposed smoothing the empirical con-
text distribution as p̂↵(c) := #(c)↵/

P
c #(c)↵

and found ↵ = 0.75 to work well in practice. We
also found that setting ↵ = 0.75 gave a small but
consistent improvement over setting ↵ = 1. Note
that the choice of ↵ only affects methods that make
use of the context distribution (s 2 {ppmi, cca}).

The parameter � controls the role of singular
values in word embeddings. This is always 0

for CCA as it does not require singular values.
But for other methods, one can consider setting
� > 0 since the best-fit subspace for the rows
of ⌦ is given by U⌃. For example, Deerwester
et al. (1990) use � = 1 and Levy and Goldberg
(2014b) use � = 0.5. However, it has been found
by many (including ourselves) that setting � = 1

yields substantially worse representations than set-
ting � 2 {0, 0.5} (Levy et al., 2015).

Different combinations of these aspects repro-
duce various spectral embeddings explored in the
literature. We enumerate some meaningful combi-
nations:

SPECTRAL-TEMPLATE
Input: word-context co-occurrence counts #(w, c), dimen-
sion m, transformation method t, scaling method s, context
smoothing exponent ↵  1, singular value exponent �  1

Output: vector v(w) 2 Rm for each word w 2 [n]

Definitions: #(w) :=

P
c #(w, c), #(c) :=

P
w #(w, c),

N(↵) :=

P
c #(c)↵

1. Transform all #(w, c), #(w), and #(c):

#(·) 

8
>><

>>:

#(·) if t = —
log(1 + #(·)) if t = log

#(·)2/3 if t = two-thirdsp
#(·) if t = sqrt

2. Scale statistics to construct a matrix ⌦ 2 Rn⇥n:

⌦w,c  

8
>>>><

>>>>:

#(w, c) if s = —
#(w,c)
#(w) if s = reg

max

⇣
log

#(w,c)N(↵)
#(w)#(c)↵ , 0

⌘
if s = ppmi

#(w,c)p
#(w)#(c)↵

q
N(↵)
N(1) if s = cca

3. Perform rank-m SVD on ⌦ ⇡ U⌃V > where ⌃ =

diag(�1, . . . , �m) is a diagonal matrix of ordered sin-
gular values �1 � · · · � �m � 0.

4. Define v(w) 2 Rm to be the w-th row of U⌃

� normal-
ized to have unit 2-norm.

Figure 2: A template for spectral word embedding
methods.

No scaling
⇥
t 2 {—, log, sqrt}, s = —

⇤
. This is

a commonly considered setting (e.g., in Penning-
ton et al. (2014)) where no scaling is applied to the
co-occurrence counts. It is however typically ac-
companied with some kind of data transformation.

Positive point-wise mutual information (PPMI)⇥
t = —, s = ppmi

⇤
. Mutual information is a pop-

ular metric in many natural language tasks (Brown
et al., 1992; Pantel and Lin, 2002). In this setting,
each term in the matrix for SVD is set as the point-
wise mutual information between word w and con-
text c:

log

p̂(w, c)

p̂(w)p̂↵(c)
= log

#(w, c)
P

c #(c)↵

#(w)#(c)↵

Typically negative values are thresholded to 0 to
keep ⌦ sparse. Levy and Goldberg (2014b) ob-
served that the negative sampling objective of the
skip-gram model of Mikolov et al. (2013b) is im-
plicitly factorizing a shifted version of this ma-
trix.2

2This is not equivalent to applying SVD on this matrix,
however, since the loss function is different.
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literature. We enumerate some meaningful combi-
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Figure 2: A template for spectral word embedding
methods.

No scaling
⇥
t 2 {—, log, sqrt}, s = —

⇤
. This is

a commonly considered setting (e.g., in Penning-
ton et al. (2014)) where no scaling is applied to the
co-occurrence counts. It is however typically ac-
companied with some kind of data transformation.

Positive point-wise mutual information (PPMI)⇥
t = —, s = ppmi

⇤
. Mutual information is a pop-

ular metric in many natural language tasks (Brown
et al., 1992; Pantel and Lin, 2002). In this setting,
each term in the matrix for SVD is set as the point-
wise mutual information between word w and con-
text c:

log

p̂(w, c)

p̂(w)p̂↵(c)
= log

#(w, c)
P

c #(c)↵

#(w)#(c)↵

Typically negative values are thresholded to 0 to
keep ⌦ sparse. Levy and Goldberg (2014b) ob-
served that the negative sampling objective of the
skip-gram model of Mikolov et al. (2013b) is im-
plicitly factorizing a shifted version of this ma-
trix.2

2This is not equivalent to applying SVD on this matrix,
however, since the loss function is different.
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Configuration 500 dimensions 1000 dimensions
Transform (t) Scale (s) AVG-SIM SYN MIXED AVG-SIM SYN MIXED

— — 0.514 31.58 28.39 0.522 29.84 32.15
sqrt — 0.656 60.77 65.84 0.646 57.46 64.97
log — 0.669 59.28 66.86 0.672 55.66 68.62
— reg 0.530 29.61 36.90 0.562 32.78 37.65

sqrt reg 0.625 63.97 67.30 0.638 65.98 70.04
— ppmi 0.638 41.62 58.80 0.665 47.11 65.34

sqrt cca 0.678 66.40 74.73 0.690 65.14 77.70

Table 2: Performance of various spectral methods on the development portion of data.

Transform (t) AVG-SIM SYN MIXED
— 0.572 39.68 57.64
log 0.675 55.61 69.26

two-thirds 0.650 60.52 74.00
sqrt 0.690 65.14 77.70

Table 1: Performance of CCA (1000 dimensions)
on the development portion of data with different
data transformation methods (↵ = 0.75, � = 0).

as a held-out portion for development and use the
other half for final evaluation.

7.1.1 Effect of data transformation for CCA
We first look at the effect of different data trans-
formations on the performance of CCA. Table 1
shows the result on the development portion with
1000-dimensional embeddings. We see that with-
out any transformation, the performance can be
quite bad—especially in word analogy. But there
is a marked improvement upon transforming the
data. Moreover, the square-root transformation
gives the best result, improving the accuracy on
the two analogy datasets by 25.46% and 20.06%
in absolute magnitude. This aligns with the dis-
cussion in Section 4.3.

7.1.2 Comparison among different spectral
embeddings

Next, we look at the performance of various com-
binations in the template in Figure 2. We smooth
the context distribution with ↵ = 0.75 for PPMI
and CCA. We use � = 0.5 for PPMI (which has
a minor improvement over � = 0) and � = 0 for
all other methods. We generally find that using
� = 0 is critical to obtaining good performance
for s 2 {—, reg}.

Table 2 shows the result on the development
portion for both 500 and 1000 dimensions. Even

without any scaling, SVD performs reasonably
well with the square-root and log transformations.
The regression scaling performs very poorly with-
out data transformation, but once the square-root
transformation is applied it performs quite well
(especially in analogy questions). The PPMI scal-
ing achieves good performance in word similarity
but not in word analogy. The CCA scaling, com-
bined with the square-root transformation, gives
the best overall performance. In particular, it per-
forms better than all other methods in mixed anal-
ogy questions by a significant margin.

7.1.3 Comparison with other embedding
methods

We compare spectral embedding methods against
WORD2VEC and GLOVE on the test portion. We
use the following combinations based on their per-
formance on the development portion:

• LOG: log transform, — scaling

• REG: sqrt transform, reg scaling

• PPMI: — transform, ppmi scaling

• CCA: sqrt transform, cca scaling

For WORD2VEC, there are two model options:
continuous bag-of-words (CBOW) and skip-gram
(SKIP). Table 3 shows the result for both 500 and
1000 dimensions.

In word similarity, spectral methods generally
excel, with CCA consistently performing the best.
SKIP is the only external package that performs
comparably, with GLOVE and CBOW falling be-
hind. In word analogy, REG and CCA are signifi-
cantly better than other spectral methods. They are
also competitive to GLOVE and CBOW, but SKIP
does perform the best among all compared meth-
ods on (especially syntactic) analogy questions.
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• Word similarity: 13 anotators 
- ex) (money, cash, 9.08), (king, cabbage, 0.23) 

• Word analogy: [Levy&Goldberg’14] 
- a : b ~ c : x 
- argmax cos(x, c) * cos(x, b) / (cos(x, a) + ε)
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x ∈ V \ {a,b,c}


