Model－Based Word Embeddings from Decompositions of Count Matrices

Karl Stratos，Michael Collins，Daniel Hsu

担当：村岡雅康（M2）
乾•岡崎研究室
東北大学大学院 情報科学研究科

モチベーション

－［Levy\＆Goldberg14］：skip－gram［Mikolov＋13］は postive PMI（PPMI）に変換された共起行列の分解 と等価
－Question：他の優れた変換って何かないの？

本研究の概要

－CCA（Canonical Correlation Analysis）［Hotelling，1936］で次元圧縮するときに行う変換を拡張した手法を提案
－similarity，analogy，NERのタスクでskip－gramと comparableな結果

Outline

- CCAによる次元圧縮
- Brownモデルによる拡張
- テンプレートの導入
- 実験

CCA（Canonical Correlation Analysis）とは

- 2 つのベクトル (X, Y) を次元圧縮する方法
- 今回の入力は単語\＆文脈ベクトル
- 特徴：2つのベクトル（X，Y）間の相関ができるだけ高くなるような空間に射影
- 冗長な次元が削減された空間
- 射影するための行列（A，B）を学習する必要あり

SVDによる解法

－SVD（Singular Value Decompositon）を使った解法 ［Hottelling，1936］で厳密解が求まる

相関行列 ：$\Omega \in \mathbb{R}^{d \times d^{\prime}}$
SVDによる分解

$$
\begin{aligned}
\Omega:= & \left(\mathbf{E}\left[X X^{\top}\right]-\mathbf{E}[X] \mathbf{E}[X]^{\top}\right)^{-1 / 2} \quad A=\left(\mathbf{E}\left[X X^{\top}\right]-\mathbf{E}[X] \mathbf{E}[X]^{\top}\right)^{-1 / 2} U \\
& \left(\mathbf{E}\left[X Y^{\top}\right]-\mathbf{E}[X] \mathbf{E}[Y]^{\top}\right) \overrightarrow{\text { SVD }} B=\left(\mathbf{E}\left[Y Y^{\top}\right]-\mathbf{E}[Y] \mathbf{E}[Y]^{\top}\right)^{-1 / 2} V \\
& \left(\mathbf{E}\left[Y Y^{\top}\right]-\mathbf{E}[Y] \mathbf{E}[Y]^{\top}\right)^{-1 / 2}
\end{aligned}
$$

XとYの表現を工夫することで
簡略化できる

単語／文脈のone－hot表現

－．．．Whatever our souls are made of ．．．

－$\left(x^{(i)}, y^{(i)}\right)=\left(\mathcal{I}_{\text {souls }}, \mathcal{I}_{\text {our }}\right), \quad\left(\mathcal{I}_{\text {souls }}, \mathcal{I}_{\text {are }}\right)$
－サンプル数 \rightarrow 大のとき，平均 $\rightarrow 0$

既存研究

－［Dhillon＋11；12］

$$
\hat{\Omega}_{w, c}=\frac{\operatorname{count}(w, c)^{1 / 2}}{\sqrt{\operatorname{count}(w)^{1 / 2} \times \operatorname{count}(c)^{1 / 2}}}
$$

- 1／2は経験的（empirical）な理由
- 本研究ではブラウンモデル［Brown＋1992］を使って理論的な裏付けを行う

Outline

- CCAによる次元圧縮
- Brownモデルによる拡張
- テンプレートの導入
- 実験

ブラウンモデル［Brown＋1992］

- 隠れ状態に制約のあるHMM
- 制約（ブラウン仮定）：各単語には高々1個の隠れ状態
- \Rightarrow 出力行列 O の各行は1要素以外全てゼロ ただし，$O_{w, h}=o(w \mid h)$
－正規化することで隠れ状態数だけクラスタができる

回転\＆スケールしても表現力は同じ

－ $\bar{O}:=\operatorname{diag}\left(s_{1}\right) O^{\langle a\rangle} \operatorname{diag}\left(s_{2}\right) Q^{\top}$

- $s_{1}, s_{2}>0$ を満たすベクトル
- $O^{\langle a\rangle}$ ：要素ごとに指数乗した出力行列
- Q ：任意の直交（変換）行列

定理

－$a \neq 0 . \hat{U}: \hat{\Omega}_{w, c}^{\langle a\rangle}$ の左特異値ベクトル

$$
\hat{\Omega}_{w, c}^{\langle a\rangle}=\frac{\operatorname{count}(w, c)^{a}}{\sqrt{\operatorname{count}(w)^{a} \times \operatorname{count}(c)^{a}}}
$$

－サンプル数が大きいとき

$$
\hat{U} \rightarrow O^{\langle a / 2\rangle} \operatorname{diag}(s) Q^{\top}
$$

- （証明）Appendix A および［Stratos＋14］を参照
- 主張：（回転\＆スケールされた）O を用いれば任意の a を選ぶことができる！

$a=1 / 2$ が最適

- 根拠：
- 単語の出現は多項分布に従うと仮定
- これはそれぞれ独立なポアソン分布と等価
- ポアソン分布の2乗根は分散安定な変換［Bartlett，1936］

$$
\begin{aligned}
X & \sim \text { Poisson }(n p) \\
\operatorname{Var}\left(X^{1 / 2}\right) & \rightarrow \mathbf{1} / \mathbf{4} \quad(n \rightarrow \infty)
\end{aligned}
$$

分散安定のうれしさ

- SVDの目的関数：重みなし二乗誤差
- 分散不均一データに関してはsuboptimal

$$
\min _{u_{w}, v_{c}} \sum_{w, c}\left(\Omega_{w, c}^{\langle a\rangle}-u_{w}^{\top} v_{c}\right)^{2}
$$

－分散で重み付けられた二乗誤差［Aitken，1936］

$$
\min _{u_{w}, v_{c}} \sum_{w, c} \frac{1}{\operatorname{Var}\left(\Omega_{w, c}^{\langle a\rangle}\right)}\left(\Omega_{w, c}^{\langle a\rangle}-u_{w}^{\top} v_{c}\right)^{2}
$$

- これだと一般的にintractable［Srebro＋03］
- でも今は定数で近似できる！

Outline

- CCAによる次元圧縮
- Brownモデルによる拡張
- テンプレートの導入
- 実験

SVDモデル（テンプレート）

－入力：共起頻度count（w，C），次元m，変換t，スケールs
$-\operatorname{count}(w):=\sum_{c} \operatorname{count}(w, c)$
$-\operatorname{count}(c):=\sum_{w} \operatorname{count}(w, c)$
－出力：m次元の単語ベクトル $\mathrm{V}(\mathrm{w})$

1．頻度の変換

2．スケール

3．SVD：$\hat{\Omega} \approx \hat{U} \hat{\Sigma} \hat{V}^{\top}$
$\longrightarrow \quad v(w)=\hat{U}_{w} /\left\|\hat{U}_{w}\right\|$

SVDモデル（提案手法）

－入力：共起頻度count（w，c），次元m，変換sqrt，スケールcca
－ $\operatorname{count}(w):=\sum_{c} \operatorname{count}(w, c)$
－ $\operatorname{count}(c):=\sum_{w} \operatorname{count}(w, c)$
－出力 ：m次元の単語ベクトル $v(w)$

1．頻度の変換 $\operatorname{count}(w, c) \leftarrow \sqrt{\operatorname{count}(w, c)} \operatorname{count}(w) \leftarrow \sqrt{\operatorname{count}(w)}$ $\operatorname{count}(c) \leftarrow \sqrt{\operatorname{count}(c)}$

2．スケール

$$
\hat{\Omega}_{w, c}=\frac{\operatorname{count}(w, c)}{\sqrt{\operatorname{count}(w) \times \operatorname{count}(c)}}
$$

3．SVD：$\hat{\Omega} \approx \hat{U} \hat{\Sigma} \hat{V}^{\top} \quad \longrightarrow \quad v(w)=\hat{U}_{w} /\left\|\hat{U}_{w}\right\|$

SVDモデル［Levy\＆Goldberg14］

－入力：共起頻度count（w，c），次元m，変換なし，スケールppmi
$-\operatorname{count}(w):=\sum_{c} \operatorname{count}(w, c)$
$-\operatorname{count}(c):=\sum_{w} \operatorname{count}(w, c)$
－出力： m 次元の単語ベクトル $\mathrm{V}(\mathrm{w})$

1．頻度の変換 $\operatorname{count}(w, c) \leftarrow \operatorname{count}(w, c) \quad \operatorname{count}(w) \leftarrow \operatorname{count}(w)$ $\operatorname{count}(c) \leftarrow \operatorname{count}(c)$

2．スケール

$$
\hat{\Omega}_{w, c}=\max \left(0, \log \frac{\operatorname{count}(w, c) \times \sum_{w, c} \operatorname{count}(w, c)}{\operatorname{count}(w) \times \operatorname{count}(c)}\right)
$$

3．SVD：$\hat{\Omega} \approx \hat{U} \hat{\Sigma} \hat{V}^{\top} \longrightarrow v(w)=\hat{U}_{w} /\left\|\hat{U}_{w}\right\|$

SVDモデル［Peninngton＋14］

－入力 ：共起頻度count（w，c），次元m，変換log，スケールなし
－ $\operatorname{count}(w):=\sum_{c} \operatorname{count}(w, c)$
－count $(c):=\sum_{w} \operatorname{count}(w, c)$
－出力 ：m次元の単語ベクトル $\mathrm{V}(\mathrm{w})$

1．頻度の変換

$$
\operatorname{count}(w, c) \leftarrow \log (1+\operatorname{count}(w, c))
$$

2．スケール

$$
\hat{\Omega}_{w, c}=\operatorname{count}(w, c)
$$

3．SVD：$\hat{\Omega} \approx \hat{U} \hat{\Sigma} \hat{V}^{\top} \quad \longrightarrow \quad v(w)=\hat{U}_{w} /\left\|\hat{U}_{w}\right\|$

Outline

- CCAによる次元圧縮
- Brownモデルによる拡張
- テンプレートの導入
- 実験

実験

－コーパス：English Wikipedia（1．4 billion words）

- 評価タスク
- Word similarity：人手のスコアとのスピアマン相関 －（money，cash）$\rightarrow 9.08$ ，（king，cabbage）$\rightarrow 0.23$
－Word analogy：Beijing ：China～Tokyo ：？
- NER（CoNLL 2003）：embeddingを素性として使用
- 外部モデル
－GLOVE［Pennington＋14］
－CBOW，SKIP［Mikolov＋13］ －ハイパーパラメータはデフォルト

結果：Word similarity

－1000次元

結果：Word analogy

－1000次元

SVDモデル（上）内では提案手法（sqrt／cca）がベスト全体ではskip－gramが最も良い結果

結果：NER（CoNLL 2003）

－30次元，Brown clustering（BROWN）は1000クラスタ
＊数値はF1

SVDモデル（中央）がBROWN，SKIPを上回る

まとめ

－共起行列の成分をCCAを用いて変換する手法を提案

- その拡張としてブラウンモデルを取り入れた
- SVDモデルのテンプレートを導入した
－similarity，analogy，NERのタスクでskip－gramと comparableな結果

Appendixes

復習：skip－gram

－ある目的関数を最大化するように単語／文脈べクト ルを学習：

$$
\left(v_{w}, v_{c}\right)=\underset{u, v}{\arg \max } J(u, v)
$$

－その内積は共起頻度のPPMIである［Levy\＆Goldberg14］

分散不均一性

Heteroscedasticity

予備実験（ a の影響）

－1000次元

$$
\hat{\Omega}_{w, c}^{\langle a\rangle}=\frac{\operatorname{count}(w, c)^{a}}{\sqrt{\operatorname{count}(w)^{a} \times \operatorname{count}(c)^{a}}}
$$

Template of SVD model

SPECTRAL－TEMPLATE

Input：word－context co－occurrence counts \＃(w, c) ，dimen－ sion m ，transformation method t ，scaling method s ，context smoothing exponent $\alpha \leq 1$ ，singular value exponent $\beta \leq 1$
Output：vector $v(w) \in \mathbb{R}^{m}$ for each word $w \in[n]$
Definitions：$\#(w):=\sum_{c} \#(w, c), \#(c):=\sum_{w} \#(w, c)$ ， $N(\alpha):=\sum_{c} \#(c)^{\alpha}$

1．Transform all $\#(w, c), \#(w)$ ，and $\#(c)$ ：

$$
\#(\cdot) \leftarrow\left\{\begin{aligned}
\#(\cdot) & \text { if } t=- \\
\log (1+\#(\cdot)) & \text { if } t=\log \\
\#(\cdot)^{2 / 3} & \text { if } t=\text { two-thirds } \\
\sqrt{\#(\cdot)} & \text { if } t=\text { sqrt }
\end{aligned}\right.
$$

2．Scale statistics to construct a matrix $\Omega \in \mathbb{R}^{n \times n}$ ：

$$
\Omega_{w, c} \leftarrow\left\{\begin{aligned}
\#(w, c) & \text { if } s=- \\
\frac{\#(w, c)}{\#(w)} & \text { if } s=\mathrm{reg} \\
\max \left(\log \frac{\#(w, c) N(\alpha)}{\#(w) \#(c)^{\alpha}}, 0\right) & \text { if } s=\mathrm{ppmi} \\
\frac{\#(w, c)}{\sqrt{\#(w) \#(c)^{\alpha}} \sqrt{\frac{N(\alpha)}{N(1)}}} & \text { if } s=\mathrm{cca}
\end{aligned}\right.
$$

3．Perform rank－m SVD on $\Omega \approx U \Sigma V^{\top}$ where $\Sigma=$ $\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ is a diagonal matrix of ordered sin－ gular values $\sigma_{1} \geq \cdots \geq \sigma_{m} \geq 0$ ．

4．Define $v(w) \in \mathbb{R}^{m}$ to be the w－th row of $U \Sigma^{\beta}$ normal－ ized to have unit 2－norm．

Performance of SVD model

Configuration		500 dimensions				1000 dimensions		
Transform (t)	Scale (s)	AVG－SIM	SYN	MIXED	AVG－SIM	SYN	MIXED	
-	-	0.514	31.58	28.39	0.522	29.84	32.15	
sqrt	-	0.656	60.77	65.84	0.646	57.46	64.97	
log	-	0.669	59.28	66.86	0.672	55.66	68.62	
-	reg	0.530	29.61	36.90	0.562	32.78	37.65	
sqrt	reg	0.625	63.97	67.30	0.638	$\mathbf{6 5 . 9 8}$	70.04	
-	ppmi	0.638	41.62	58.80	0.665	47.11	65.34	
sqrt	cca	$\mathbf{0 . 6 7 8}$	$\mathbf{6 6 . 4 0}$	$\mathbf{7 4 . 7 3}$	$\mathbf{0 . 6 9 0}$	65.14	$\mathbf{7 7 . 7 0}$	

－Word similarity： 13 anotators
－ex）（money，cash，9．08），（king，cabbage，0．23）
－Word analogy：［Levy\＆Goldberg＇14］
－$a: b \sim c: x$
－$\underset{x \in V \backslash\{a, b, c\}}{\operatorname{argmax}} \cos (x, c)^{*} \cos (x, b) /(\cos (x, a)+\varepsilon)$

