# Compositional Semantic Parsing on Semi-Structured Tables

### ACL 2015 Panupong Pasupat and Percy Liang Stanford University 説明:松田耕史 (東北大学)

かなりの部分を、著者による発表スライド http://cs.stanford.edu/~ppasupat/resource/ACL2015-slides.pdf から使わせて頂いています Parse questions into executable logical forms





## **Motivation**



説明しようとして力尽きました

Percy Liang の ICML2015 チュートリアルスライドが大いに参考になります

http://icml.cc/2015/tutorials/icml2015-nlu-tutorial.pdf



## **Motivation**



ポイント

- ウェブ上のテーブルに対する質問応答
- Question Denotation のペアから論理 表現への変換 (Semantic Parser) を学習 するモデル
- - 全体の枠組みは "Semantic Parsing on Freebase from Question-Answer Pairs" (Berant, 2013) の延長線上

   - サポートされる演算は増えている

   テーブルを「グラフ」で表現する

## **Task Description**

Input: utterance x and HTML table t

### Output: answer y

| Year | City      | Country | Nations |
|------|-----------|---------|---------|
| 1896 | Athens    | Greece  | 14      |
| 1900 | Paris     | France  | 24      |
| 1904 | St. Louis | USA     | 12      |
|      |           |         |         |
| 2004 | Athens    | Greece  | 201     |
| 2008 | Beijing   | China   | 204     |
| 2012 | London    | UK      | 204     |

x = Greece held its last Summer Olympics in which year?

*y* = 2004

データセット:Wikipediaから、AMTを使って作りました!

### Dataset

### WikiTableQuestions dataset:

- ► Tables *t* are from Wikipedia
- Questions x and answers y are from Mechanical Turk – Prompts are given to encourage compositionality

### MT Task 1: 質問を作ってもらう

Wikipediaのテーブルを見せて、質 問を作ってもらう。(36種類のプロ ンプト) 例)「最後の」を含めた質問を作れ

### MT Task 2: 答えをつけてもらう

Wikipediaのテーブルと、 Task 1 で作った質問を見せて、答えをつ けてもらう

### ⇒ 22033 Question-Answer Pair on 2108 Tables

# lambda DCS

 (Liang, 2013): Model-theoretic compisitional semantics のための論理表 現形式

> lambda-DCS 表現を自然言語か \_\_\_\_\_ らい<u>か</u>に得るか

 $\texttt{Type.Person} \sqcap \texttt{PlacesLived.Location.Chicago}$ 



#### Entity

Chicago

Join PlaceOfBirth.Chicago

Intersect Type.Person PlaceOfBirth.Chicago

Aggregation

 $\texttt{count}(\mathsf{Type}.\mathsf{Person} \sqcap \mathsf{PlaceOfBirth}.\mathsf{Chicago})$ 

#### Superlative

 $\verb|argmin|(Type.Person \sqcap PlaceOfBirth.Chicago, DateOfBirth)||$ 

### Components of a semantic parser



## Approach



## Representation

### Convert table *t* to knowledge graph *w*

| Year | City      | Country | Nations | Index 0           |
|------|-----------|---------|---------|-------------------|
| 1896 | Athens    | Greece  | 14      | Voor City         |
| 1900 | Paris     | France  | 24      | Next 100/         |
| 1904 | St. Louis | USA     | 12      | 1896 Atnens       |
|      |           |         |         | Year City         |
| 2004 | Athens    | Greece  | 201     | Next 1900 Paris   |
| 2008 | Beijing   | China   | 204     |                   |
| 2012 | London    | UK      | 204     | Number Date       |
|      |           |         |         | 1900.0 1900-XX-XX |

# テーブルをグラフで表現する

- 利点
  - 異なる正規化形をノードとして表現できる
     グラフのトラバースとしていくつかの操作を 表現できる
    - •例)「次の・・・」 => Nextポインタをたどる
  - lambda DCSで直接問い合わせできる

# Approach



# 論理表現の生成

基本的には、 ボトムアップパーサー(文法は Table 2, Table 3) 空文字列からnon-terminalを出す仕組み "Floating" を導入



## Approach



# Ranking

Given a set Z of candidate formulas z, define a loglinear distribution:

$$p_{\theta}(\mathbf{z} \mid \mathbf{x}, \mathbf{w}) \propto \exp \{\theta^{\mathsf{T}} \varphi(\mathbf{x}, \mathbf{w}, \mathbf{z})\}$$

where

- $\theta$  = parameter vector
- $\varphi(x, w, z)$  = feature vector





As usual, we choose  $\theta$  to maximize the (L1 regularized) expectation of  $\log p_{\theta}(y \mid x, w)$  over training data

評価

- 評価指標
  - Acc: 生成された(最も高いランクの)zがyを得た割合
  - Oracle: 生成された z のうち最低1つ 正しい y が得られる割合
- ベースライン
  - IR-inspired:テーブルセルの上のsoftmax
  - WQ : Berant and Liang (2014)
    - 差分: superlative(argmin, argmax), union, intersection等

| Semantic Parsing | 9           | accuracy | oracle |            |
|------------------|-------------|----------|--------|------------|
| 尊入による改善          | IR-inspired | 12.7     | 70.6   | ルール追加による改善 |
|                  | WQ          | 24.3     | 35.6   |            |
|                  | This work   | 37.1     | 76.6   |            |

<u>http://cs.stanford.edu/~ppasupat/resource/ACL2015-slides.pdf</u> に、面白いPositive Exampleがいくつかあります。

# 本論文の貢献まとめ

- ウェブ上のテーブルを用いてセマンティックパーサー を訓練する
  - 基本アイディア:テーブルをグラフ表現 + Lambda DCS で問い合わせ
  - Lambda DCSの生成には、ボトムアップのパーサーと、 機械学習に基づくランキングを使う
  - データはWikipediaからクラウドソーシングで作っている
- ちょっとずるい点:
  - <テーブル集合> が与えられたもとでの QA ではなく、 < テーブル> が与えられたもとでの QA
  - どのテーブルに答えがあるか、は分かっている状況

# おまけ:データセットの特徴

- 22033 Q-A Pair, 2108 Tables, 3929 Unique column headers, 13396 columns
- Only 20% of questions can answered using Freebase (WikiTableQuestions have broad coverage)
- Logical Operation Coverage :
- Compositionality :



| Operation                      | Amount  |
|--------------------------------|---------|
| join (table lookup)            | 13.5%   |
| + join with Next               | + 5.5%  |
| + aggregate (count, sum, max,) | + 15.0% |
| + superlative (argmax, argmin) | + 24.5% |
| + arithmetic, $\Box$ , $\Box$  | + 20.5% |
| + other phenomena              | + 21.0% |