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word embedding�
•  単語の特徴（意味）を低次元のベクトルで表現

•  どのように得るか？
– 次元圧縮（e.g., 単語共起⾏行行列列をSVD）
– ニューラル⾔言語モデル（e.g., word2vec）
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本論論⽂文の⽬目的�
•  フレーズの意味を表す低次元のベクトル
を単語のベクトルから構築する
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既存研究と問題点�
•  あらかじめ演算を定義（e.g., sum）

L単語の特徴や⽂文脈に適した演算を⾏行行えない
•  DT（e.g., a, the, this）の意味は無視して良良いはず

•  ⾏行行列列やテンソルを利利⽤用（e.g., RecursiveNN）

L計算量量が⼤大きい
•  次元数を増やしづらい
•  ⼩小規模なデータセットでの教師あり学習のみ
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本研究の概要�
•  単語の特徴や⽂文脈に応じた演算でフレー
ズのベクトルを計算する⼿手法を提案

•  提案⼿手法の計算量量は⼩小さい
– ⾼高次元（e.g., 200次元）なベクトルも扱える
– ⼤大規模なデータで学習可能

•  教師なし，教師あり，組み合わせで学習，
評価
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提案モデル�
•  フレーズのベクトル：単語ベクトルの重み付き和

•  重みは単語の素性（e.g., 品詞，単語の位置）から
計算
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ized to allow the inclusion of features based on the
phrase structure and contextual information, includ-
ing positional indicators of the word components.
The phrase composition is a weighted summation of
embeddings of component words, where the sum-
mation weights are defined by the features, which
allows for fast composition.

We discuss a range of training settings for FCT.
For tasks with labeled data, we utilize task-specific
training. We begin with embeddings trained on raw
text and then learn compositional phrase parameters
as well as fine-tune the embeddings for the specific
task’s objective. For tasks with unlabeled data (e.g.
most semantic tasks) we can train on a large corpus
of unlabeled data. For tasks with both labeled and
unlabeled data, we consider a joint training scheme.
Our model’s efficiency ensures we can incorporate
large amounts of unlabeled data, which helps miti-
gate over-fitting and increases vocabulary coverage.

We begin with a presentation of FCT (§2), includ-
ing our proposed features for the model. We then
present three training settings (§3) that cover lan-
guage modeling (unsupervised), task-specific train-
ing (supervised), and joint (semi-supervised) set-
tings. The remainder of the paper is devoted to eval-
uation of each of these settings.

2 Feature-rich Compositional
Transformations from Words to Phrases

We learn transformations for composing phrase em-
beddings from the component words based on ex-
tracted features from a phrase, where we assume
that the phrase boundaries are given. The result-
ing phrase embedding is based on a per-dimension
weighted average of the component phrases. Con-
sider the example of base noun phrases (NP), a com-
mon phrase type which we want to compose. Base
NPs often have flat structures – all words modify the
head noun – which means that our transformation
should favor the head noun in the composed phrase
embedding. For each of the N words wi in phrase p
we construct the embedding:

ep =
NX

i

�i � ewi (1)

where ewi is the embedding for word i; and � refers
to point-wise product. �i is a weight vector that is

constructed based on the features of p and the model
parameters:

�ij =
X

k

↵jkfk(wi, p) + bij (2)

where fk(wi, p) is a feature function that considers
word wi in phrase p and bij is a bias term. This
model is fast to train since it has only linear transfor-
mations: the only operations are vector summation
and inner product. Therefore, we learn the model
parameters ↵ together with the embeddings. We call
this the Feature-rich Compositional Transformation
(FCT) model.

Consider some example phrases and associated
features. The phrase “the museum” should have an
embedding nearly identical to “museum” since “the”
has minimal impact the phrase’s meaning. This
can be captured through part-of-speech (POS) tags,
where a tag of DT on “the” will lead to �i ⇡

~
0,

removing its impact on the phrase embedding. In
some cases, words will have specific behaviors. In
the phrase “historic museum”, the word “historic”
should impact the phrase embedding to be closer
to “landmark”. To capture this behavior we add
smoothed lexical features, where smoothing reduces
data sparsity effects. These features can be based on
word clusters, themselves induced from pre-trained
word embeddings.

Our feature templates are shown in Table 1.
Phrase boundaries, tags and heads are identified us-
ing existing parsers or from Annotated Gigaword
(Napoles et al., 2012) as described in Section 5. In
Eq. (1), we do not limit phrase structure though the
features in Table 1 tend to assume a flat structure.
However, with additional features the model could
handle longer phrases with hierarchical structures,
and adding these features does not change our model
or training objectives. Following the semantic tasks
used for evaluation we experimented with base NPs
(including both bigram NPs and longer ones). We
leave explorations of features for complex structures
to future work.

FCT has two sets of parameters: one is the fea-
ture weights (↵,b), the other is word embeddings
(ew). We could directly use the word embeddings
learned by neural language models. However, our
experiments show that those word embeddings are
often not suited for FCT. Therefore we propose to
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フレーズのベクトル� 単語ベクトル�単語wi への
重みベクトル�

単語wi への
重みベクトルの j 次元�

素性ベクトル�



素性�

•  組み合わせ素性は割愛�

7�

Simple Features Compound Features
POS tags t(wi�1), t(wi), t(wi+1) < t(wk), t(wk+1) > k 2 {i� 1, i}

Word clusters c(wi�1), c(wi), c(wi+1) < c(wk), c(wk+1) > k 2 {i� 1, i}
wi�1, wi, wi+1 if wi is function word

Head word I[i = h] < t(wk), I[i = h] > k 2 {i� 1, i, i+ 1}

< c(wk), I[i = h] > k 2 {i� 1, i, i+ 1}

Distance from head Dis(h� i) < t(wk),Dis(h� i) > k 2 {i� 1, i, i+ 1}

< c(wk),Dis(h� i) > k 2 {i� 1, i, i+ 1}

Head tag/cluster t(wh), c(wh) if i 6= h < t(wh), t(wi) >,< c(wh), c(wi) > if i 6= h

Table 1: Feature templates for word wi in phrase p. t(w): POS tag; c(w): word cluster (when w is a function word,
i.e. a preposition word or conjunction word, there is no need to have smoothed version of the word features based on
clusters. Therefore we directly use the word forms as features as shown in line 3 of the table); h: position of head word
of the phrase p; Dis(i� j): distance between wi and wj (distance in tokens). < f1, f2 > refers to the conjunction (i.e.
Cartesian product) between two feature templates f1 and f2.

learn both the feature weights and the word embed-
dings with objectives in Section 3. Moreover, ex-
periments show that starting with the baseline word
embeddings leads to better learning results compar-
ing to random initializations. Therefore in the rest of
the paper, if not specifically mentioned, we always
initialize the embeddings of FCT with baseline word
embeddings learned by Mikolov et al. (2013b).

3 Training Objectives
The speed and flexibility of FCT enables a range
of training settings. We consider standard unsu-
pervised training (language modeling), task-specific
training and joint objectives.

3.1 Language Modeling
For unsupervised training on large scale raw texts
(language modeling) we train FCT so that phrase em-
beddings – as composed in Section 2 – predict con-
textual words, an extension of the skip-gram objec-
tive (Mikolov et al., 2013b) to phrases. For each
phrase pi = (wi1 , ..., win) 2 P, wij 2 V , where P

is the set of all phrases and V is the word vocabu-
lary. Here i is the index of a phrase in set P and ij
is the absolute index of the jth component word of
pi in the sentence. For predicting the c words to the
left and right the skip-gram objective becomes:

max

↵,b,ew,e0w

1

|P|

|P|X

i=1

0

@
X

0<jc

logP
⇣
e0wi1�j

|epi

⌘

+

X

0<jc

logP
⇣
e0win+j

|epi

⌘
1

A ,

where P (e0w|epi) =
exp

⇣
e0w

T epi

⌘

P
w02V exp

⇣
e0w0

T epi

⌘ , (3)

where ↵,b, ew are parameters (the word embed-
dings ew become parameters when fine-tuning is en-
abled) of FCT model defined in Section 2. As is com-
mon practice, when predicting the context words we
use a second set of embeddings e0w called output em-
beddings (Mikolov et al., 2013b). During training
FCT parameters (↵,b) and word embeddings (ew
and e0w) are updated via back-propagation. epi is
the phrase embedding defined in Eq. (1). wi1�j is
the j-th word before phrase pi and win+j is the j-th
word after pi. We can use negative sampling based
Noise Contrastive Estimation (NCE) or hierarchical
softmax training (HS) in (Mikolov et al., 2013b) to
deal with the large output space. We refer to this
objective as the language modeling (LM) objective.

3.2 Task-specific Training

When we have a task for which we want to learn
embeddings, we can utilize task-specific training of
the model parameters. Consider the case where we
wish to use phrase embeddings produced by FCT in
a classification task, where the goal is to determine
whether a phrase ps is semantically similar to a can-
didate phrase (or word) pi. For a phrase ps and a set
of candidate phrases {pi, yi}N1 , yi = 1 indicates se-
mantic similarity of ps and pi and yi = 0 otherwise,
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品詞による意味の
強さを捉えたい
（DT（e.g., a, the, this）の
意味は無視（重み 0 ）する）�

似た意味の単語は
同じ重みで計算して欲しい
（big, large, hugeは
同じ重みになって欲しい）�



⽬目的関数�
•  教師なし学習
– skip-gramの⽬目的関数をフレーズに拡張

•  教師あり学習
– softmaxを⽤用いたmulti label分類

•  ２つの組み合わせ
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•  単語wiから周辺語wi+jの予測確率率率を最⼤大化
– 周辺単語のベクトルに似るように学習

 �
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P(wi+ j |wi ) =
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skip-gram[Mikolov+ 13]�
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周辺単語を予測�

⽂文脈の範囲�
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skip-gramのフレーズへの拡張�
•  単語ベクトルの代わりにフレーズのベクトル
で周辺語を予測
– フレーズのベクトル：単語ベクトルから構築

 �
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…natural   herbal   medical product   cures    several … �

周辺単語を予測�

+λproduct�λmedical 
medical � product�

誤差逆伝播でパラメータ
（単語のベクトル，α，b）
を学習�

ized to allow the inclusion of features based on the
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The phrase composition is a weighted summation of
embeddings of component words, where the sum-
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large amounts of unlabeled data, which helps miti-
gate over-fitting and increases vocabulary coverage.
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ing our proposed features for the model. We then
present three training settings (§3) that cover lan-
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ing (supervised), and joint (semi-supervised) set-
tings. The remainder of the paper is devoted to eval-
uation of each of these settings.

2 Feature-rich Compositional
Transformations from Words to Phrases

We learn transformations for composing phrase em-
beddings from the component words based on ex-
tracted features from a phrase, where we assume
that the phrase boundaries are given. The result-
ing phrase embedding is based on a per-dimension
weighted average of the component phrases. Con-
sider the example of base noun phrases (NP), a com-
mon phrase type which we want to compose. Base
NPs often have flat structures – all words modify the
head noun – which means that our transformation
should favor the head noun in the composed phrase
embedding. For each of the N words wi in phrase p
we construct the embedding:

ep =
NX
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where ewi is the embedding for word i; and � refers
to point-wise product. �i is a weight vector that is

constructed based on the features of p and the model
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where fk(wi, p) is a feature function that considers
word wi in phrase p and bij is a bias term. This
model is fast to train since it has only linear transfor-
mations: the only operations are vector summation
and inner product. Therefore, we learn the model
parameters ↵ together with the embeddings. We call
this the Feature-rich Compositional Transformation
(FCT) model.

Consider some example phrases and associated
features. The phrase “the museum” should have an
embedding nearly identical to “museum” since “the”
has minimal impact the phrase’s meaning. This
can be captured through part-of-speech (POS) tags,
where a tag of DT on “the” will lead to �i ⇡

~
0,

removing its impact on the phrase embedding. In
some cases, words will have specific behaviors. In
the phrase “historic museum”, the word “historic”
should impact the phrase embedding to be closer
to “landmark”. To capture this behavior we add
smoothed lexical features, where smoothing reduces
data sparsity effects. These features can be based on
word clusters, themselves induced from pre-trained
word embeddings.

Our feature templates are shown in Table 1.
Phrase boundaries, tags and heads are identified us-
ing existing parsers or from Annotated Gigaword
(Napoles et al., 2012) as described in Section 5. In
Eq. (1), we do not limit phrase structure though the
features in Table 1 tend to assume a flat structure.
However, with additional features the model could
handle longer phrases with hierarchical structures,
and adding these features does not change our model
or training objectives. Following the semantic tasks
used for evaluation we experimented with base NPs
(including both bigram NPs and longer ones). We
leave explorations of features for complex structures
to future work.

FCT has two sets of parameters: one is the fea-
ture weights (↵,b), the other is word embeddings
(ew). We could directly use the word embeddings
learned by neural language models. However, our
experiments show that those word embeddings are
often not suited for FCT. Therefore we propose to
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softmaxを⽤用いたmulti label分類�
•  フレーズ  ps がフレーズ  pi と似ているか，
分類するタスク
– ps がpi と似ている：yi = 1
– ps がpi と似ていない：yi = 0
– として
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we use a classification objective:

max

↵,b,ew

X

ps

NX

i=1

yi logP (yi = 1|ps, pi)

= max

↵,b,ew

X

ps

NX

i=1

yi log
exp

�
eps

T epi
�

PN
j exp

�
eps

T epj
� . (4)

where ep is the phrase embedding from Eq. (1).
When a candidate phrase pi is a single word, a lex-
ical embedding can be used directly to derive epi .
When N = 1 for each ps, i.e., we are working on
binary classification problems, the objective will re-
duce to logistic loss and a bias b will be added. For
very large sets, e.g., the whole vocabulary, we use
NCE to approximate the objective. We call Eq. (4)
the task-specific (TASK-SPEC) objective.

In addition to updating only the FCT parameters,
we can update the embeddings themselves to im-
prove the task-specific objective. We use the fine-
tuning strategy (Collobert and Weston, 2008; Socher
et al., 2013a) for learning task-specific word embed-
dings, first training FCT and the embeddings with
the LM objective and then fine-tuning the word em-
beddings using labeled data for the target task. We
refer to this process as “fine-tuning word emb” in
the experiment session. Note that fine tuning can
be also applied to baseline word embeddings trained
with the TASK-SPEC objective or the LM objective
above.

3.3 Joint Training
While labeled data is the most helpful for train-
ing FCT for a task, relying on labeled data alone
will yield limited improvements: labeled data has
low coverage of the vocabulary, which can lead to
over-fitting when we update FCT model parameters
Eq. (4) and fine-tune word embeddings. In particu-
lar, the effects of fine-tuning word embeddings are
usually limited in NLP applications. In contrast to
other applications, like vision, where a single input
can cover most or all of the model parameters, word
embeddings are unique to each word, so a word will
have its embedding updated only when the word ap-
pears in a training instance. As a result, only words
that appear in the labeled data will benefit from fine-
tuning and, by changing only part of the embedding
space, the performance may be worse overall.

Language modeling provides a method to update
all embeddings based on a large unlabeled corpus.
Therefore, we combine the language modeling ob-
ject (Eq. (3)) and the task-specific object (Eq. (4)) to
yield a joint objective. When a word’s embedding is
changed in a task-specific way, it will impact the rest
of the embedding space through the LM objective.
Thus, all words can benefit from the task-specific
training.

We call this the joint objective and call the re-
sulted model FCT-Joint (FCT-J for short), since it up-
dates the embeddings with both the LM and TASK-
SPEC objectives.

In addition to jointly training both objectives, we
can create a pipeline. First, we train FCT with the LM
objective. We then fine-tune all the parameters with
the TASK-SPEC objective. We call this FCT-Pipeline
(FCT-P for short).

3.4 Applications to Other Phrase Composition
Models

While our focus is the training of FCT, we note
that the above training objectives can be applied to
other composition models as well. As an example,
consider a recursive neural network (RNN) (Socher
et al., 2011; Socher et al., 2013a), which recur-
sively computes phrase embeddings based on the bi-
nary sub-tree associated with the phrase with matrix
transformations. For the bigram phrases considered
in the evaluation tasks, suppose we are given phrase
p = (w1, w2). The model then computes the phrase
embedding ep as:

ep = � (W · [ew1 : ew2 ]) , (5)

where [ew1 : ew2 ] is the concatenation of two em-
bedding vectors. W is a matrix of parameters to
be learned, which can be further refined according
to the labels of the children. Back-propagation can
be used to update the parameter matrix W and the
word embeddings during training. It is possible to
train the RNN parameters W with our TASK-SPEC
or LM objective: given syntactic trees, we can use
RNN (instead of FCT) to compute phrase embeddings
ep, which can be used to compute the objective, and
then have W updated via back-propagation. The ex-
periments below show results for this method, which
we call RNN, with TASK-SPEC training. However,
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実験設定�
•  コーパス：NYT 1994-97（LDC2011T07）
–  515,301,382 tokens
– 語彙：518,235語（頻度度5以上の単語）

•  フレーズ：NPとなるbi-gram
–  new trial, dead body, an extension, …

•  ベクトルの次元数：200
•  提案⼿手法の初期値：skip-gramで学習したベクトル
–  skip-gramモデルを⽐比較する際はコーパスを２周する

•  skip-gramと提案⼿手法での学習設定（窓幅や負例例の
サンプリング数）は合わせる
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⽐比較⼿手法�
•  skip-gramで得たベクトルの和（SUM）

•  RecursiveNN（⾏行行列列は品詞組み合わせ毎）
– ADJ-NNの⾏行行列列，NN-NNの⾏行行列列，…

� 13�
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タスク�
•  複数の教師ありタスクで実験
•  PPDB：inputに対し，outputとの類似度度が候補中で⾼高いか
•  SemEval2013：２つの表現が類似か否か
•  Turney2012：inputに対し，正しいoutputを選択できるか

–  候補中で正解の類似度度が最も⾼高くなるか

 �

14�

Data Set Input Output
(1)PPDB medicinal products drugs
(2)SemEval2013 <small spot, flect> True

<male kangaroo, point> False
(3)Turney2012 monosyllabic word monosyllable, hyalinization, fund, gittern, killer
(4)PPDB (ngram) contribution of the european union eu contribution

Table 5: Examples of phrase similarity tasks. (1) PPDB is a ranking task, in which an input bigram and a output
noun are given, and the goal is to rank the output word over other words in the vocabulary. (2) SemEval2013 is a
binary classification task: determine whether an input pair of a bigram and a word form a paraphrase (True) or not
(False). (3) Turney2012 is a multi-class classification task: determine the word most similar to the input phrase (in
bold) from the five output candidates. For the 10-choice task, the goal is to select the most similar pair between the
combination of one bigram phrase, i.e., the input phrase or the swapped input (“word monosyllabic” for this example),
and the five output candidates. The correct answer in this case should still be the pair of original input phrase and the
original correct output candidate (in bold). (4) PPDB (ngram) is similar to PPDB, but in which both inputs and outputs
becomes noun phrases with arbitrary lengths.

and Dredze, 2014) to that between phrases. Data de-
tails appear in Table 2.

Phrase Similarity Datasets We use a variety of
human annotated datasets to evaluate phrase se-
mantic similarity: the SemEval2013 shared task
(Korkontzelos et al., 2013), and the noun-modifier
problem (Turney2012) in Turney (2012). Both
tasks provide evaluation data and training data. Se-
mEval2013 Task 5(a) is a classification task to de-
termine if a word phrase pair are semantically simi-
lar. Turney2012 is a task to select the closest match-
ing candidate word for a given phrase from candi-
date words. The original task contained seven can-
didates, two of which are component words of the
input phrase (seven-choice task). Followup work has
since removed the components words from the can-
didates (five-choice task). Turney (2012) also pro-
pose a 10-choice task based on this same dataset.
In this task, the input bigram noun phrase will have
its component words swapped. Then all the pairs of
swapped phrase and a candidate word will be treated
as a negative example. Therefore, each input phrase
will correspond to 10 test examples where only one
of them is the positive one.

Longer Phrases: PPDB (ngram-to-ngram) To
show the generality of our approach we evaluate our
method on phrases longer than bigrams. We extract
arbitrary length noun phrase pairs from PPDB. We
only include phrase pairs that differ by more than
one word; otherwise the task would reduce to eval-
uating unigram similarity. Similar to the bigram-to-

unigram task, we used the XXL set and removed du-
plicate pairs. We used the most accurate pairs for
development (2,821 pairs) and test (2,920 pairs); the
remaining 148,838 pairs were used for training.

As before, we rely on negative sampling to effi-
ciently compute the objective during training. For
each source/target n-gram pair, we sample negative
noun phrases as outputs. Both the target phrase and
the negative phrases are transformed to their phrase
embeddings with the current parameters. We then
compute inner products between embedding of the
source phrase and these output embeddings, and up-
date the parameters according to the NCE objective.
We use the same feature templates as in Table 1.

Notice that the XXL set contains several subsets
(e.g., M, L ,XL) ranked by accuracy. In the experi-
ments we also investigate their performance on dev
data. Unless otherwise specified, the full set is se-
lected (performs best on dev set) for training.

Baselines We compare to the common and ef-
fective point-wise addition (SUM) method (Mitchell
and Lapata, 2010).5 We additionally include
Weighted SUM, which learns overall dimension
specific weights from task-specific training, the
equivalent of FCT with ↵jk=0 and bij learned from
data. Furthermore, we compare to dataset specific

5Mitchell and Lapata (2010) also show success with point-
wise product (MULTI) for VSMs. However, MULTI is ill-suited
to word embeddings and gave poor results in all our experi-
ments. Mikolov et al. (2013b) show that sum of embeddings is
related to product of context distributions because of the loga-
rithmic computation in the output layer.
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Fine-tuning MRR
Model Objective Word Emb @ 10k
SUM - - 41.19
SUM TASK-SPEC Y 45.01
WSum TASK-SPEC Y 45.43
RNN 50 TASK-SPEC N 37.81
RNN 50 TASK-SPEC Y 39.25
RNN 200 TASK-SPEC N 41.13
RNN 200 TASK-SPEC Y 40.50
FCT TASK-SPEC N 41.96
FCT TASK-SPEC Y 46.99
FCT LM Y 42.63
FCT-P TASK-SPEC+LM Y 49.44
FCT-J TASK-SPEC+LM joint 51.65

Table 6: Performance on the PPDB task (test data).

ent candidate vocabulary sizes (1k, 10k and 100k),
and Table 6 highlights the results on the vocabulary
using the top 10k words. Overall, FCT with TASK-
SPEC training improves over all the baseline meth-
ods in each setting. Fine-tuning word embeddings
improves all methods except RNN (d=200). We
note that the RNN performs poorly, possibly because
it uses a complex transformation from word em-
bedding to phrase embeddings, making the learned
transformation difficult to generalize well to new
phrases and words when the task-specific labeled
data is small. As a result, there is no guarantee
of comparability between new pairs of phrases and
word embeddings. The phrase embeddings may end
up in a different part of the subspace from the word
embeddings.

Comparing to SUM and Weighted SUM, FCT
is capable of using features providing critical con-
textual information, which is the source of FCT’s
improvement. Additionally, since the RNNs also
used POS tags and parsing information yet achieved
lower scores than FCT, our results show that FCT
more effectively uses these features. To better
show this advantage, we train FCT models with only
POS tag features, which achieve 46.37/41.20 on
MRR@10k with/without fine-tuning word embed-
dings, still better than RNNs. See Section 6.3 for a
full ablation study of features in Table 1.

Semi-supervised Results: Table 6 also high-
lighted the improvement from semi-supervised
learning. First, the fully unsupervised method (LM)

improves over SUM, showing that improvements in
language modeling carry over to semantic similar-
ity tasks. This correlation between the LM ob-
jective and the target task ensures the success of
semi-supervised training. As a result, both semi-
supervised methods, FCT-J and FCT-P improves over
the supervised methods; and FCT-J achieves the
best results of all methods, including FCT-P. This
demonstrates the effectiveness of including large
amounts of unlabeled data while learning with a
TASK-SPEC objective. We believe that by adding
the LM objective, we can propagate the semantic in-
formation of embeddings to the words that do not
appear in the labeled data (see the differences be-
tween vocabulary sizes in Table 2).

The improvement of FCT-J over FCT-P also in-
dicates that the joint training strategy can be more
effective than the traditional pipeline-based pre-
training. As discussed in Section 3.3, the pipeline
method, although commonly used in deep learning
literatures, does not suit NLP applications well be-
cause of the sparsity in word embeddings. There-
fore, our results suggest an alternative solution to a
wide range of NLP problems where labeled data has
low coverage of the vocabulary. For future work, we
will further investigate the idea of joint training on
more tasks and compare with the pipeline method.

Results on SemEval2013 and Turney2012 We
evaluate the same methods on SemEval2013 and
the Turney2012 5- and 10-choice tasks, which
both provide training and test splits. The same base-
lines in the PPDB experiments, as well as the Dual
Space method of Turney (2012) and the recursive
auto-encoder (RAE) from Socher et al. (2011) are
used for comparison. Since the tasks did not provide
any development data, we used cross-validation (5
folds) for tuning the parameters, and finally set the
training epochs to be 20 and ⌘ = 0.01. For joint
training, the weight of the LM objective is weighted
by 0.005 (i.e. with a learning rate equal to 0.005⌘)
since the training sets for these two tasks are much
smaller. For convenience, we also include results
for Dual Space as reported in Turney (2012), though
they are not comparable here since Turney (2012)
used a much larger training set.

Table 7 shows similar trends as PPDB. One dif-
ference here is that RNNs do better with 200 dimen-
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Fine-tuning SemEval2013 Turney2012
Model Objective Word Emb Test Acc (5) Acc (10) MRR @ 10k
SUM - - 65.46 39.58 19.79 12.00
SUM TASK-SPEC Y 67.93 48.15 24.07 14.32
Weighted Sum TASK-SPEC Y 69.51 52.55 26.16 14.74
RNN (d=50) TASK-SPEC N 67.20 39.64 25.35 1.39
RNN (d=50) TASK-SPEC Y 70.36 41.96 27.20 1.46
RNN (d=200) TASK-SPEC N 71.50 40.95 27.20 3.89
RNN (d=200) TASK-SPEC Y 72.22 42.84 29.98 4.03
Dual Space1 - - 52.47 27.55 16.36 2.22
Dual Space2 - - - 58.3 41.5 -
RAE auto-encoder - 51.75 22.99 14.81 0.16
FCT TASK-SPEC N 68.84 41.90 33.80 8.50
FCT TASK-SPEC Y 70.36 52.31 38.66 13.19
FCT LM - 67.22 42.59 27.55 14.07
FCT-P TASK-SPEC+LM Y 70.64 53.09 39.12 14.17
FCT-J TASK-SPEC+LM joint 70.65 53.31 39.12 14.25

Table 7: Performance on SemEval2013 and Turney2012 semantic similarity tasks. Dual Space1: Our reimple-
mentation of the method in (Turney, 2012). Dual Space2: The result reported in Turney (2012). RAE is the recursive
auto-encoder in (Socher et al., 2011), which is trained with the reconstruction-based objective of auto-encoder.

sional embeddings on SemEval2013, though at a
dimensionality with similar computational complex-
ity to FCT (d = 50), FCT improves. Additionally, on
the 10-choice task of Turney2012, both the FCT
and the RNN models, either with or without fine-
tuning word embeddings, significantly outperform
SUM, showing that both models capture the word or-
der information. Fine tuning gives smaller gains on
RNNs likely because the limited number of training
examples is insufficient for the complex RNN model.
The LM objective leads to improvements on all three
tasks, while RAE does not perform significantly bet-
ter than random guessing. These results are perhaps
attributable to the lack of assumptions in the objec-
tive about the relations between word embeddings
and phrase embeddings, making the learned phrase
embeddings not comparable to word embeddings.

6.2 Dimensionality and Complexity
A benefit of FCT is that it is computationally effi-
cient, allowing it to easily scale to embeddings of
200 dimensions. By contrast, RNN models typi-
cally use smaller sized embeddings (d = 25 proved
best in Socher et al., 2013a) and cannot scale up
to large datasets when larger dimensionality embed-
dings are used. For example, when training on the
PPDB data, the FCT with d = 200 processes 2.33
instances per ms, while the RNN with the same di-

mensionality processes 0.31 instance/ms. Training
an RNN with d = 50 is of comparable speed to FCT
with d = 200. Figure 2 (a-b) shows the MRR on
PPDB for 1k and 10k candidate sets for both the
SUM baseline and FCT with a TASK-SPEC objective
and full features, as compared to RNNs with differ-
ent sized embeddings. Both FCT and RNN use fine-
tuned embeddings. With a small number of embed-
ding dimensions, RNNs achieve better results. How-
ever, FCT can scale to much higher dimensionality
embeddings, which easily surpasses the results of
RNNs. This is especially important when learning
a large number of embeddings: the 25-dimensional
space may not be sufficient to capture the semantic
diversity, as evidenced by the poor performance of
RNNs with lower dimensionality.

Similar trends observed on the PPDB data
also appear on the tasks of Turney2012 and
SemEval2013. Figure 2 (c-f) shows the perfor-
mances on these two tasks. On the Turney2012
task, the FCT even outperforms the RNN model us-
ing embeddings with the same dimensionality. One
possible reason is due to overfitting of the more com-
plex RNN models on these small training sets. Fig-
ure 2(d) shows that the performances of FCT on the
10-choice task are less affected by the dimensions
of embeddings. That is because the composition
models can well handle the word order information,
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(a) MRR@1k on PPDB dev set
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(b) MRR@10k on PPDB dev set
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(c) accuracy on the 5-choice task in
Turney2012
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(d) accuracy on the 10-choice task in
Turney2012
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(e) MRR@10k on Turney2012
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(f) accuracy on the SemEval2013

Figure 2: Effects of embedding dimension on the semantic similarity tasks. The notations “RNN< d >” in the figures
stand for the RNN models trained with d-dimensional embeddings.

which is critical to solving the 10-choice task, with-
out relying on too much semantic information from
word embeddings themselves. Figure 2(e) shows
that when the dimensionality of embeddings is lower
than 100, both FCT and RNN do worse than the base-
line. This is likely because in the case of low dimen-
sionality, updating embeddings is likely to change
the whole structure of embeddings of training words,
making both the fine-tuned word embeddings and
the learned phrase embeddings incomparable to the
other words. The performance of RNN with 25-
dimension embeddings is too low so it is omitted.

6.3 Experiments on Longer Phrases
So far our experiments have focused on bigram
phrases. We now show that FCT improves for longer
n-gram phrases (Table 8). Without fine-tuning, FCT
performs significantly better than the other models,
showing that the model can better capture the con-
text and annotation information related to phrase se-
mantics with the help of rich features. With different
amounts of training data, we found that WSum and
FCT both perform better when trained on the PPDB-

Train Fine-tuning MRR
Model Set Word Emb @10k @ 100k
SUM - N 46.53 16.62
WSum L N 51.10 18.92
FCT L N 68.91 29.04
SUM XXL Y 74.30 29.14
WSum XXL Y 75.37 31.13
FCT XXL Y 79.68 36.00

Table 8: Results on PPDB ngram-to-ngram task.

L set, a more accurate subset of XXL with 24,279
phrase pairs. This can be viewed as a low resource
setting, where there is limited data for fine-tuning
word embeddings.

With fine-tuning of word embeddings, FCT still
significantly beats the other models. All three
methods get their best results on the full XXL set,
likely because it contains more phrase pairs to al-
leviate over fitting caused by fine-tuning word em-
beddings. Notice that fine-tuning greatly helps all
the methods, including SUM, indicating that this
ngram-to-ngram task is still largely dominated
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結論論�
•  単語の特徴や⽂文脈に応じた演算でフレー
ズのベクトルを計算する⼿手法を提案

•  単語ベクトルの和，RNNよりも良良い性能
であると⽰示した
– 教師なし学習（⼤大量量のデータ使⽤用）を組み合
わせるとさらに良良くなる

18�



おまけ：計算量量，計算時間�
•  単語ベクトルの次元数200での訓練時に
– 提案⼿手法：2.33 instance / ms
– RNN：0.31 instance / ms

•  と論論⽂文では報告している
•  しかし，計算量量は
– 提案⼿手法：O(発⽕火した素性数 * 次元数^2)

•  重みベクトルの計算量量：O(発⽕火した素性数 * 次元数)
– RNN：O(次元数^2)

•  に思うので，ちょっと良良くわからない�
19�



おまけ：素性と性能の変化�

•  単語クラスタが最も効果がある
•  単語ごとに重みベクトルを学習（WSUM）は低い

–  クラスタにしないと疎だから？
–  素性は前後の単語も⾒見見ているから？

20�

Feature Set MRR @ 10k
FCT 79.68
-clus 76.82
-POS 77.67
-Compound 79.40
-Head 77.50
-Distance 78.86
WSum 75.37
SUM 74.30

Table 9: Ablation study on dev set of the PPDB

ngram-to-ngram task (MRR @ 10k).

by the quality of single word semantics. Therefore,
we expect larger gains from FCT on tasks where sin-
gle word embeddings are less important, such as re-
lation extraction (long distance dependencies) and
question understanding (intentions are largely de-
pendent on interrogatives).

Finally, we demonstrate the efficacy of different
features in FCT (Table 1) with an ablation study (Ta-
ble 9). Word cluster features contribute most, be-
cause the point-wise product between word embed-
ding and its context word cluster representation is
actually an approximation of the word-word inter-
action, which is believed important for phrase com-
positions. Head features, though few, also make a
big difference, reflecting the importance of syntactic
information. Compound features do not have much
of an impact, possibly because the simpler features
capture enough information.

7 Related Work

Compositional semantic models aim to build distri-
butional representations of a phrase from its compo-
nent word representations. A traditional approach
for composition is to form a point-wise combina-
tion of single word representations with composi-
tional operators either pre-defined (e.g. element-
wise sum/multiplication) or learned from data (Le
and Mikolov, 2014). However, these approaches
ignore the inner structure of phrases, e.g. the or-
der of words in a phrase and its syntactic tree, and
the point-wise operations are usually less expressive.
One solution is to apply a matrix transformation
(possibly followed by a non-linear transformation)
to the concatenation of component word represen-
tations (Zanzotto et al., 2010). For longer phrases,

matrix multiplication can be applied recursively ac-
cording to the associated syntactic trees (Socher et
al., 2010). However, because the input of the model
is the concatenation of word representations, ma-
trix transformations cannot capture interactions be-
tween a word and its contexts, or between compo-
nent words.

There are three ways to restore these interac-
tions: The first is to use word-specific/tensor trans-
formations to force the interactions between com-
ponent words in a phrase. In these methods, word-
specific transformations, which are usually matri-
ces, are learned for a subset of words according to
their syntactic properties (e.g. POS tags) (Baroni
and Zamparelli, 2010; Socher et al., 2012; Grefen-
stette et al., 2013; Erk, 2013). Composition between
a word in this subset and another word becomes the
multiplication between the matrix associated with
one word and the embedding of the other, produc-
ing a new embedding for the phrase. Using one
tensor (not word-specific) to compose two embed-
ding vectors (has not been tested on phrase similar-
ity tasks) (Bordes et al., 2014; Socher et al., 2013b)
is a special case of this approach, where a “word-
specific transformation matrix” is derived by multi-
plying the tensor and the word embedding. Addi-
tionally, word-specific matrices can only capture the
interaction between a word and one of its context
words; others have considered extensions to multi-
ple words (Grefenstette et al., 2013; Dinu and Ba-
roni, 2014). The primary drawback of these ap-
proaches is the high computational complexity, lim-
iting their usefulness for semantics (Section 6.2.)

A second approach draws on the concept of con-
textualization (Erk and Padó, 2008; Dinu and Lap-
ata, 2010; Thater et al., 2011), which sums embed-
dings of multiple words in a linear combination. For
example, Cheung and Penn (2013) apply contextu-
alization to word compositions in a generative event
extraction model. However, this is an indirect way
to capture interactions (the transformations are still
unaware of interactions between components), and
thus has not been a popular choice for composition.

The third approach is to refine word-independent
compositional transformations with annotation fea-
tures. FCT falls under this approach. The primary
advantage is that composition can rely on richer lin-
guistic features from the context. While the em-
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おまけ：skip-gramモデルの
perplexity�

•  提案⼿手法はperplexity，lossが低いのでフレーズの
ベクトルから周辺語の予測が良良く出来ている

•  学習時にフレーズを学習するかで窓幅が変わる可
能性があり，公平な⽐比較か少し疑問
–  herbal medical product curesについて
–  skip-gram：medicalの周辺N単語
– 提案⼿手法：medical productの周辺N単語

21�

Perplexity (HS training) NCE loss (NCE training)
Model Subset Train Dev Test Subset Train Dev Test
SUM (2 epochs) 7.620 7.577 7.500 2.312 2.226 2.061
word2vec (2 epochs) 7.103 7.074 7.052 2.274 2.195 2.025
FCT (random init, 2 epochs) 6.753 6.628 6.713 1.879 1.722 1.659
FCT (with pre-training, 1 epochs) 6.641 6.540 6.552 1.816 1.691 1.620

Table 3: Language model perplexity and NCE loss on a subset of train, dev, and test NYT data.

k�1k � k�2k k�1k ⇡ k�2k k�1k ⌧ k�2k
Model biological north-eastern dead medicinal new an

diversity part body products trial extension

FCT

sensitivity northeastern remains drugs proceeding signed
natural sprawling grave uses cross-examination terminated
abilities preserve skeleton chemicals defendant temporary
species area full

SUM

destruction portion unconscious marijuana new an
racial result dying packaging judge renewal

genetic integral flesh substances courtroom another
cultural chunk signing

Table 4: Differences in the nearest neighbors from the two phrase embedding models.

Table 3 shows results for the NYT training data
(subset of the full training data containing 30,000
phrases with their contexts from July 1994), de-
velopment and test data. Language models with
FCT performed much better than the SUM and
word2vec baselines, under both NCE and HS
training. Note that FCT with pre-training makes a
single pass over the whole NYT corpus and then
a pass over only the bigram NPs, and the random
initialization model makes a pass over the bigrams
twice. This is less data compared to two passes over
the full data (baselines), which indicates that FCT
better captures the context distributions of phrases.

Qualitative Analysis Table 4 shows words and
their most similar phrases (nearest neighbors) com-
puted by FCT and SUM. We show three types of
phrases: one where the two words in a phrase con-
tribute equally to the phrase embedding, where the
first word dominates the second in the phrase em-
bedding, and vice versa. We measure the effect of
each word by computing the total magnitude of the
� vector for each word in the phrase. For example,
for the phrase “an extension”, the embedding for the
second word dominates the resulting phrase embed-
ding (k�1k ⌧ k�2k) as learned by FCT. The table
highlights the differences between the methods by
showing the most relevant phrases not selected as
most relevant by the other method. It is clear that
words selected using FCT are more semantically re-

lated than those of the baseline.

6 Experiments: Task-specific Training:
Phrase Similarity

Data We consider several phrase similarity
datasets for evaluating task-specific training. Table
5 summarizes these datasets and shows examples of
inputs and outputs for each task.

PPDB The Paraphrase Database (PPDB)4 (Gan-
itkevitch et al., 2013) contains tens of millions of
automatically extracted paraphrase pairs, including
words and phrases. We extract all paraphrases con-
taining a bigram noun phrase and a noun word from
PPDB. Since articles usually have little contribu-
tions to the phrase meaning, we removed the easy
cases of all pairs in which the phrase is composed
of an article and a noun.Next, we removed duplicate
pairs: if <A,B> occurred in PPDB, we removed re-
lations of <B,A>. PPDB is organized into 6 parts,
ranging from S (small) to XXXL. Division into these
sets is based on an automatically derived accuracy
metric. We extracted paraphrases from the XXL set.
The most accurate (i.e. first) 1,000 pairs are used for
evaluation and divided into a dev set (500 pairs) and
test set (500 pairs); the remaining pairs were used
for training. Our PPDB task is an extension of mea-
suring PPDB semantic similarity between words (Yu

4
http://www.cis.upenn.edu/

˜

ccb/ppdb/
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