Describing Images using Inferred Visual Dependency Representations

Desmond Elliot, Arjen P. de Vries

ACL 2015

Presented by:

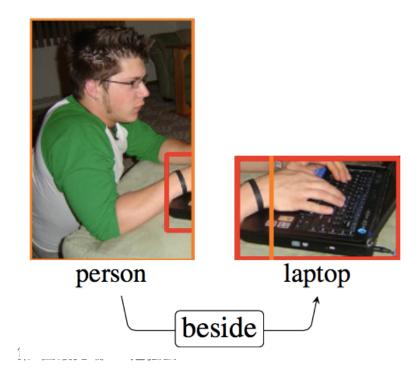
Sumit Maharjan

Tohoku University

Background

VDR (Visual Dependency Representation)

model spatial relationship between objects in an image



Objective and Motivation

Objective:

- Train a VDR without extensive human supervision
- Use VDR to generate image description

Motivation:

- Automatically generating literal description of images can help
 - Access to existing image
 - Information for visually impaired

Why VDR?

- Related with human cognition
- Spatial relationships between objects constrains image description

Related Works

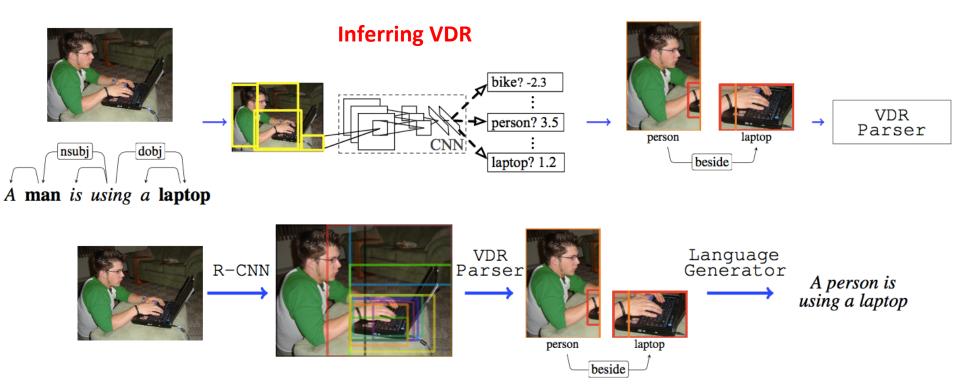
Different approaches

- Spatial relationship (Farhadi et al., 2010)
- corpus-based relationships (Yang et al., 2011)
- spatial and visual attributes (Kulkarni et al., 2011)
- RNN and LSTM
 (Karpathy and Fei-Fei, 2015; Vinyals et al., 2015; Mao et al., 2015; Fang et al., 2015; Donahue et al., 2015; Lebret et al., 2015)
- VDR (Elliott and Keller, 2013)

Previous work: Relied on gold-standard training annotation

This work: Automatically infer training examples

Method: Overview



Generating descriptions

Method: Inferring VDRs

- Description: Dependency parsing to extract nsubj and dobj candidates
 - Lemmatized and transformed to WordNet hypernym parent
- Image: R-CNN(Girshick et al., 2014)
 to detect objects in image [200 classes]
 - Outputs bounding box and Confidence score
- Infer VDR for the object pairs using spatial relations

Relation	Definition			
Beside	The angle between the subject and the object is either between 315° and 45° or 135° and 225° .			
Above	The angle between the subject and object is between 225° and 315°.			
Below	The angle between the subject and object is between 45° and 135° .			
On	More than 50% of the subject overlaps with the object.			
Surrounds	More than 90% of the subject overlaps with the object.			

Spatial Relations

Method: Inferring VDRs

A boy is using a laptop

(a) on

A man is riding a bike

A woman is riding a bike

(c) surrounds (b) above

A woman is riding a horse

(d) surrounds

A man is playing a sax

(e) surrounds

A man is playing a guitar

(f) beside

The woman is wearing a helmet

(g) surrounds

Method: Generating Description

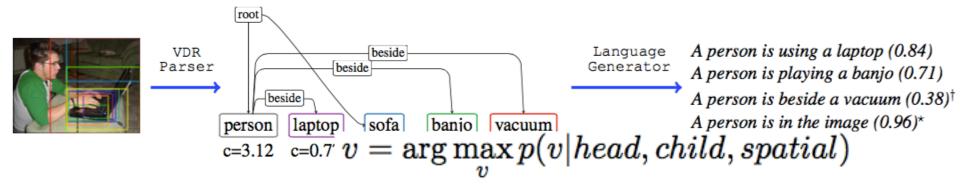
Language model

- subjects, verbs, objects, and spatial relationships
 from successfully constructed training examples
- Verb **stemmed** and inflected to **ing** using *morpha* and *morphg*
- spatial relationship between the subject and object region is used to help constrain language generation to produce descriptions

Method: Generating Description

- Description generated using template based model
- R-CNN detects gives top-N detected objects
- VDR Parser generates VDR structure for the detected objects
- All possible descriptions is generated using the template

Object detector output



DT head is V DT child.

head and **child**: objects from VDR

Verb selection

 $p(v|head,child,spatial) = \\ p(v|head) \cdot p(child|v,head) \cdot \\ p(spatial|child,v,head)$

Sentence scoring

If relation can't be extracted

A/An **object** is in the image.

$$score(head, v, child, spatial) = \\ p(v|head, child, spatial) \cdot \\ sgm(head) \cdot sgm(child)$$

Experiments

Task: generation of natural language description of an image

Models to compare with

- MIDGE (Mitchell et al., 2012) [tree-substitution grammar and discrete object detections]
- BRNN (Karpathy and Fei-Fei, 2015) [multimodal deep neural network]

Evaluation Measures

- Meteor (Denkowski and Lavie, 2011)
- BLEU4 (Papineni et al., 2002),

Experiments: Data sets

Data sets

- Pascal1K
 - 1,000 images
 - sampled from the PASCAL Object Detection Challenge data set (Everingham et al., 2010)
 - each image has five descriptions collected from Mechanical Turk
 - Has a wide variety of subject matter
- VLT2K
 - 2,424 images
 - trainval 2011 portion of the PASCAL Action Recognition Challenge each image paired with three descriptions collected from Mechanical Turk

80% training, 10% validation, 10% test

Experiments: Results

- Performance of VDR depends on type of images
- Difference in Metoer and BLEU

	VLT2K		Pascal1K	
	Meteor	BLEU	Meteor	BLEU
VDR	16.0	14.8	7.4	9.0
BRNN	18.6	23.7	12.6	16.0
-genders	16.6	17.4	12.1	15.1
MIDGE	5.5	8.2	3.6	9.1
Human	26.4	23.3	21.7	20.6

Experiments: Results

VDR is better

VDR: A person is playing a saxophone. BRNN: A man is playing a guitar

VDR: A person is playing a guitar. BRNN: A man is jumping off a cliff

VDR: A person is playing a drum. BRNN: A man is standing on a

BRNN is better

VDR: A person is using a computer. BRNN: A man is jumping on a trampoline

VDR: A person is riding a horse. BRNN: A group of people riding horses

VDR: A person is below sunglasses. BRNN: A man is reading a book

Experiments: Results

Equally good

VDR: A person is sitting a table. BRNN: A man is sitting on a chair

VDR: A person is using a laptop. BRNN: A man is using a computer

VDR: A person is riding a horse. BRNN: A man is riding a horse

Equally bad

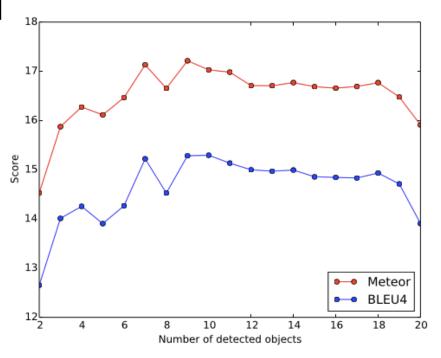
VDR: A person is holding a microphone. BRNN: A man is taking a picture

VDR: A person is driving a car. BRNN: A man is sitting on a phone

VDR: A person is driving a car. BRNN: A man is riding a bike

Experiments: No of detected objects 16

- Improvements are seen until eight objects
 - good descriptions do not always need the most confident detections
- quality of the descriptions does not significantly decrease with an increased number of detected objects
 - model formulation appropriately discards unsuitable detections



Discussion and Conclusion

- Infers useful and reliable Visual Dependency Representations of images without expensive human supervision
- Uses these to generate image descriptions
- One of the main problem is detector's accuracy
- Changing the language model to n-gram might generate better/richer descriptions
- Quality of the generated text largely depended on the data set (better in people performing actions)
- Transferring model improved in the diverse data set