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論文概要

• 大規模言い換え DBの PPDBを整理
• PPDBに意味関係のラベルを付与
• 含意関係認識 (RTE)タスクの性能向上に寄与
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言い換えデータベースの構築

言い換えとは？
→双方向に含意関係のあるフレーズの組

言い換えデータベースの構築法
• 単言語コーパスから (Lin & Pantel, 2001)

◦ 文脈を共有するフレーズを言い換えとする
◦ 逆の意味を表すフレーズ対も得られてしまう

• 対訳コーパスから (Ganitkevitch+, 2013)

◦ 別言語への翻訳を元に言い換えを得る
◦ 上位語・下位語の組や関係ない組が得られることが多い
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含意関係認識 (RTE)

含意関係認識タスクを解くには等価関係以外の関係も必要

..
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Abstract

We add an interpretable semantics to
the paraphrase database (PPDB). To date,
the relationship between phrase pairs
in the database has been weakly de-
fined as approximately equivalent. We
show that these pairs represent a vari-
ety of relations, including directed entail-
ment (little girl/girl) and exclusion (no-
body/someone). We automatically assign
semantic entailment relations to entries in
PPDB using features derived from past
work on discovering inference rules from
text and semantic taxonomy induction. We
demonstrate that our model assigns these
relations with high accuracy. In a down-
stream RTE task, our labels rival relations
from WordNet and improve the coverage
of a proof-based RTE system by 17%.

1 Motivation

A basic precursor to language understanding is the
ability to recognize when two expressions mean
the same thing. Different expressions of the same
information is the central problem addressed by
paraphrasing and the closely related task of rec-
ognizing textual entailment (RTE). In RTE, a sys-
tem is given two pieces of text, often called the
text (T) and the hypothesis (H), and asked to de-
termine whether T entails H, T contradicts H, or
T and H are unrelatable (Figure 1). In contrast,
data-driving paraphrasing typically sidesteps de-
veloping a clear definition of “meaning the same
thing” and instead “assume[s] paraphrasing is a
coherent notion and concentrate[s] on devices that
can produce paraphrases” (Barzilay, 2003). Re-
cent work on paraphrase extraction has resulted
in enormous paraphrase collections (Lin and Pan-
tel, 2001; Dolan et al., 2004; Ganitkevitch et
al., 2013), but the usefulness of these collections

Riots in Denmark were sparked by 12 editorial
cartoons that were offensive to Muhammad.

12 ⌘ Twelve
editorial cartoons A illustrations

offensive A insulting
Muhammad ⌘ the prophet

sparked A caused
riots A unrest

in Denmark | in Jordan

Twelve illustrations insulting the prophet
caused unrest in Jordan.

Figure 1: An example sentence pair for the RTE task. In order
for a system to conclude that the premise (top) does not entail
the hypothesis (bottom), it should recognize that sparked im-
plies caused but that in Denmark precludes in Jordan. These
phrase-level entailment relationships are modeled by natural
logic.

is limited by the fast-and-loose treatment of the
meaning of paraphrases. One concrete defini-
tion that is sometimes used for paraphrases re-
quires that they be bidirectionally entailing (An-
droutsopoulos and Malakasiotis, 2010). That is,
in terms of RTE, it is assumed that if P is a para-
phrase of Q, then P entails Q and Q entails P. In
reality, paraphrases are often more nuanced (Bha-
gat and Hovy, 2013), and the entries in most para-
phrase resources certainly do not match this def-
inition. For instance, Lin and Pantel (2001) ex-
tracted 12 million “inference rules” from mono-
lingual text by exploiting shared dependency con-
texts. Their method learns paraphrases that are
truly meaning equivalent, but it just as readily
learns contradictory pairs such as hX rises, X fallsi.
Ganitkevitch et al. (2013) extract over 150 mil-
lion paraphrase rules by pivoting through foreign
translations. This bilingual method often learns
hypernym/hyponym pairs, e.g. due to variation
in the discourse structure of translations (Callison-
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Does
notentail

ほとんどの RTEシステムはWordNetを使用
→限られたリソース
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PPDB (Ganitkevitch+, 2013)

Figure 2: Distribution of entailment relations in different sizes of PPDB. Distributions are estimated from our manual annota-
tions of randomly sampled pairs. PPDB-XXXL contains over 77MM paraphrase pairs (where the majority type is independent),
compared to only 700K in PPDB-S (where the majority type is equivalent).

using data motivated by the applications to infor-
mation retrieval, information extraction, summa-
rization, machine translation evaluation, and more
recently, question answering (Giampiccolo et al.,
2007) and essay grading (Clark et al., 2013). RTE
systems vary considerably in their choice of rep-
resentation and inference procedure. In the most
recent shared task on RTE, some systems used
deep logical representations of text, allowing them
to invoke theorem provers (Bjerva et al., 2014)
or Markov Logic Networks (Beltagy et al., 2014)
to perform the inference, while others used shal-
lower representations, relying on machine learn-
ing to perform inference (Lai and Hockenmaier,
2014; Zhao et al., 2014). Systems based on natural
logic (MacCartney and Manning, 2007) use natu-
ral language as a representation, but still perform
inference using a structured algebra rather than a
statistical model. Regardless of the inference pro-
cedure, improvements to external lexical resources
can improve RTE systems across the board (Clark
et al., 2007).

3 The Paraphrase Database (PPDB)

PPDB is currently the largest available collection
of paraphrases. Compared to other paraphrase
resources such as the DIRT database (12 mil-
lion rules) (Lin and Pantel, 2001) and the MSR
paraphrase phrase table (13 million) (Dolan et
al., 2004), PPDB contains over 150 million para-
phrase rules covering three paraphrase types– lex-
ical (single word), phrasal (multiword), and syn-
tactic restructuring rules. We focus on lexical and
phrasal paraphrases, of which there are over 77
million rules. Of these, a large fraction are true

paraphrases– either equivalent (distant/remote) or
asymmetric entailment (girl/little girl)– but many
are not. PPDB contains some pairs which are
related by semantic exclusion (nobody/someone),
some of which are related by something other than
entailment (swim/water), and some which are sim-
ply unrelated (car/family). Table 1 gives examples
of pairs in PPDB falling into each of these cate-
gories.

PPDB is released in six sizes (S, M, L, XL,
XXL and XXXL), which fall roughly on a con-
tinuum from highest precision and lowest recall to
lowest average precision and highest recall. Fig-
ure 2 shows how the distribution of entailment re-
lations differs across the sizes of PPDB.1 Our goal
is to make these relations explicit, by providing
annotations for each phrase pair. Because of the
enormous scale of PPDB, this annotation must be
done automatically.

4 Selection of Paraphrases

In this paper we focus on paraphrases pairs from
PPDB that occur in RTE data. We use the recent
SICK dataset from in the 2014 SemEval RTE chal-
lenge (Marelli et al., 2014) for our experiments.
The data consists of 10K sentences split roughly
evenly into training and testing sets. The sen-
tence pairs are labeled using a 3-way entailment
classification: ENTAILMENT, (29%) CONTRADIC-
TION (15%), or NEUTRAL (56%). We consider
all phrase pairs from PPDB hp1, p2i up to three
words in length such that there is some T/H sen-
tence pair in which p1 appears in T and p2 appears

1These distributions were estimated based on a random
sample of pairs drawn from each size of PPDB, annotated on
MTurk as described in Section 5
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• Equivalent : distant/remote
• Entailment : girl/little girl
• Exclusion : nobody/somebody
• Other (related) : swim/water
• Independent (not related) : car/family
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言い換えの選択

• RTEデータに現れるような言い換えに的を絞る
◦ 最終的にはすべてのデータにラベル付けしたデータを公開
する（予定？）

• SICKデータセット (SemEval-2014) (Marelli+, 2014)

◦ 10,000文（訓練・テスト）
◦ Entailment (29%), Contradiction (15%), Neutral (56%)

• PPDBのペア (p1, p2)の中で，SICKデータセットで p1 が
Tに p2 が Hに現れるもの

◦ ただし p1, p2 は 3語以下
• 9,600ペア（訓練・テストで半 ）々

◦ 分類器の訓練と評価はこのデータセットに対して
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含意関係

MaxCartneyの分類 (MacCartney, 2009)

• Equivalence: P ≡ Q ⇐⇒ ∀x.[P (x) ↔ Q(x)]

• Forward entailment: P < Q ⇐⇒ ∀x.[P (x) → Q(x)]

• Reverse entailment: P = Q ⇐⇒ ∀x.[Q(x) → P (x)]

• Negation: P^Q ⇐⇒ ∀x.[P (x) ↔ ¬Q(x)]

• Alternation: P |Q ⇐⇒ ∀x.¬[P (x) ∧Q(x)]

• Cover: P ⌣Q ⇐⇒ ∀x.[P (x) ∨Q(x)]

• Independence: P#Q all other cases
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アノテーション

• Amazon Mechanical Turkを使ってアノテーション
• いくつかの分類を変更
• Control questions (WordNet)

◦ Accuracy = 82%, κ = 0.56

Lexical We use the lemmas, POS tags, and phrase lengths of p1 and p2, the substrings shared by p1 and p2,
and the Levenstein, Jaccard, and Hamming distances between p1 and p2.

Distributional Given a dependency context vectors for p1 and p2, we compute the number of shared contexts, and
the Jaccard, Cosine, Lin1998, Weeds2004, Clarke2009, and Szpektor2008 similarities between the
vectors.

Paraphrase We include 33 paraphrase features distributed with PPDB, which include the paraphrase probabilities
as computed in Bannard and Callison-Burch (2005). We refer the reader to Ganitkevitch and Callison-
Burch (2014) for a complete description of all of the features included with PPDB.

Translation We include the number of foreign language “pivots” (translations) shared by p1 and p2 for each of 24
languages used in the construction of PPDB, as a fraction of the total number of translations observed
for each of p1 and p2.

Path We include a sparse vector of all lexico-syntactic patterns (paths through a dependency parse) which
are observed between p1 and p2 in the Annotated Gigaword corpus (Napoles et al., 2012).

WordNet We include binary features indicating whether WordNet classifies p1 and p2 according to any of the
following relations: synonym, hypernym, hyponym, antonym, holonym, meronym, cause, entailment,
derivationally-related, similar-to, also-see, or attribute.

Figure 3: Summary of features extracted for each phrase pair hp1, p2i. Full descriptions of the features used are given in the
supplementary material.

in H. Roughly 55% of the word types and 5% of
the phrase (bigram and trigram) types in the SICK
data appear in PPDB. This gives us a list of 9,600
pairs, half from the training sentences, which we
use for development in Section 6, and half from
the test sentences, which we use for evaluation in
Section 7.

The SICK data has a relatively small vocabu-
lary, with 86% of words types and <1% of the
phrase types covered by WordNet. Still, over half
of the words in SICK which are covered by PPDB
do not appear in WordNet. In general, PPDB cov-
ers a much larger vocabulary (1.6MM words) than
does WordNet (155K words), and we expect the
potential benefit of using PPDB in addition to or
in place of WordNet to be larger on datasets with
richer vocabularies.

5 Entailment Relations

We use the relations from Bill MacCartney’s
thesis on natural language inference as the basis
for our categorization of relations (MacCartney,
2009). He outlines 7 basic entailment relation-
ships:2

Equivalence (P⌘Q): 8x[P(x) $ Q(x)]
Forward Entailment (P@Q): 8x[P(x) ! Q(x)]
Reverse Entailment (PAQ): 8x[Q(x) ! P(x)]
Negation (PˆQ): 8x [P(x) $ ¬ Q(x)]
Alternation (P|Q): 8x ¬[P(x) ^ Q(x)]
Cover (P^Q): 8x[P(x) _ Q(x)]
Independence (P#Q): All other cases.

2To further clarify the definitions here: “negation” is XOR
(exclusive disjunction), “alternation” is NAND, and “cover”
is OR (inclusive disjunction)

These relations are based on the theory of natu-
ral logic, meaning they are defined between pairs
of natural language expressions rather than requir-
ing an external formal representation. This makes
them an ideal fit for the phrase pairs in in PPDB
and similar automatically-constructed paraphrase
resources.

Nat. This MTurk descriptionLog. work
⌘ ⌘ X is the same as Y
@ @ X is more specific than/is a type of Y
A A X is more general than/encompasses Y
ˆ ¬ X is the opposite of Y
| X is mutually exclusive with Y

#
⇠ X is related in some other way to Y
# X is not related to Y

Table 2: Column 1 gives the semantics of each label under
MacCartney’s Natural Logic. Column 2 gives the notation
we use throughout the remainder of this paper. Column 3
gives the description that was shown to Turkers.

Annotation We use Amazon Mechanical Turk
(MTurk) to collect labels for our phrase pairs. We
asked workers to choose between the options show
in Table 2, which represent a modified version
of MacCartney’s relations. We replace negation
(ˆ) with the weaker notion of “opposites,” effec-
tively merging it with the alternation (|) relation;
we split the independent (#) class into two cases:
truly independent phrases and phrases which are
related by something other than entailment (which
we denote ⇠). We omit the cover (^) relation en-
tirely, as its practicality is not obvious. We show
each pair to 5 workers, taking the majority label as
truth. Each HIT consisted of two control questions
taken from WordNet. Workers achieved good ac-
curacies on our controls (82% overall) and moder-
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分類器の構築

素性
• Lexical features
• WordNet features
• Monolingual features

◦ Path features (Snow+, 2004)

▷ フレーズペアが同時に現れる表現 e.g., more X than Y
◦ Distributional features (Lin & Pantel, 2001)

▷ Dependency relationsを文脈としてそれらに対する指標
• Bilingual features

◦ Paraphrase features
▷ PPDBに付与された情報

◦ Translation features
▷ 別言語への対訳語の情報

ロジスティック回帰
..8



素性詳細

Binary p1 is a substring of p2
Binary p2 is a substring of p1
Binary fine-POS(p1) == fine-POS(p2)
Binary coarse-POS(p1) == coarse-POS(p2)
Binary Both p1 and p2 are lexical
Binary Either p1 or p2 is phrasal
Binary (sparse) all words in p1, position unspecified
Binary (sparse) all words in p2, position unspecified
Binary (sparse) all words in p1, noted as p1
Binary (sparse) all words in p2, noted as p2
Binary (sparse) all POS tags in p1, noted as p1
Binary (sparse) all POS tags in p2, noted as p2
Real-valued Number of words in p1
Real-valued Number of words in p2
Real-valued Number of shared POS tags
Real-valued levenstein(p1, p2)
Real-valued jaccard(p1, p2)
Real-valued hamming(p1, p2)

Table 2: Lexical features for a phrase pair 〈p1, p2〉. ”Position
unspecified” means the feature reflected e.g that the word ap-
peared at all in the phrase pair. “Noted as p1” means that the
feature was specific to the word having been observed in the
first phrase of the pair.

For a single word w, we compute the “depen-
dency context” vector by simply considering every
dependency relation in which the w participates.
When w is the governor of a relation r and v is the
dependent, we record the context as r:gov:v; when
w is the dependent of a relation r and v is the gov-
ernor, we record the relation as r:dep:v. For mul-
tiword phrases p = w1 . . . wk, we consider the de-
pendency context of p to be the combined depen-
dency contexts r:*:v of the words w1 . . . wk, sub-
ject to the constraint that v is not one of w1 . . . wk.

Given the phrase pair 〈p1, p2〉, let P1 be the set
of contexts of p1 and P2 the set of contexts of p2.
We compute the following features:

• The number of contexts for each phrase:
|P1|,|P2|

• The difference in the number of contexts:
|P1| − |P2|

• The number of shared contexts: |P1 ∩ P2|

• The Jaccard similarity of the contexts: |P1 ∩
P2|/|P1 ∪ P2|

Let w1(c) be the number of times p1 was ob-
served in context c, and w2(c) be the number of
times p2 was observed in context c. We compute
the various symmetric and asymmetric similarity
measure (Lin, 1998; Weeds et al., 2004; Szpektor
and Dagan, 2008; Clarke, 2009) using definitions
given in Kotlerman et al. (2010):

lin =

∑
c∈P1∩P2

w1(c) + w2(c)∑
c∈P1

w1(c) +
∑
c∈P2

w2(c)
,

weeds =

∑
c∈P1∩P2

w1(c)∑
c∈P1

w1(c)
,

clark =

∑
c∈P1∩P2

min(w1(c), w2(c))∑
c∈P1

w1(c)
,

balprec =
√
lin× weeds.

Paraphrase features There are a variety of fea-
tures distributed with PPDB, which we include in
our classifier. These include 33 different measures
used to sort the goodness of the paraphrases, in-
cluding distributional similarity, bilingual align-
ment probabilities, and lexical similarity. Among
those we found to have the best signal were p(f | e)
and p(e | f), the paraphrase probabilities for phrase
pair calculated according to Bannard and Callison-
Burch (2005), and AGigaSim, the distributional
similarity of the two words computed over the An-
notated Gigaword corpus. A complete list is given
in Ganitkevitch and Callison-Burch (2014).

Translation features PPDB is based on the
“bilingual pivoting”’ method, in which two
phrases are considered paraphrases if they share a
foreign translation. The English PPDB was built
by pivoting through 24 foreign languages. We
use these pivot words as features. For each pair
of phrases 〈p1, p2〉 in our data and each language
l, we compute two asymmetric similarity scores
siml1 and siml2 capturing the number of shared
translations as a fraction of the total translations
of each phrase:

siml1 =
| tl(p1) ∩ tl(p2) |
| tl(p1) |

and

siml2 =
| tl(p1) ∩ tl(p2) |
| tl(p2) |

where tl(p) is set of observed translations of the
phrase p in language l. We compute these ratios
by looking at each language l separately as well as
by pooling the translations from all languages, e.g.

Cosine Similarity Monolingual (symmetric) Monolingual (asymmetric) Bilingual
A shades/the shade ¬ large/small A boy/little boy ⌘ dad/father
A yard/backyard ⌘ few/several A man/two men A some kid/child
# each other/man ¬ different/same A child/three children ⌘ a lot of/many
A picture/drawing ¬ other/same ⌘ is playing/play ⌘ female/woman
⇠ practice/target ¬ put/take A side/both sides ⌘ male/man

Table 3: Top scoring pairs (x/y) according to various similarity measures, along with their manually classified entailment
labels. Column 1 is cosine similarity based on dependency contexts. Column 2 is based on Lin (1998), column 3 on Weeds
(2004), and column 4 is a novel feature. Precise definitions of each metric are given in the supplementary material.

ate levels of agreement (Fleiss’s  = 0.56) (Landis
and Koch, 1977). For a fuller discussion of the
annotation, refer to the supplementary material.

6 Automatic Classification

We aim to build a classifier to automatically assign
entailment types to entries in the PPDB, and to
demonstrate that it performs well both intrinsically
and extrinsically. We fix the direction of the @ and
A relations to create a single class and train a lo-
gistic regression classifier to distinguish between
the 5 classes {#,⌘, A,¬,⇠}. We compute vari-
ety of basic lexical features and WordNet features
(summarized in Figure 3). We categorize the re-
maining features into two broad groups: monolin-
gual features, which are based on observed usage
in the Annotated Gigaword corpus (Napoles et al.,
2012), and bilingual features, which are based on
translation probabilities observed in bilingual par-
allel corpora. Full descriptions of all the features
used are provided in the supplementary material.

6.1 Monolingual features

Path features Snow et al. (2004) used lexico-
syntactic patterns to mine taxonomic relations
(hypernyms and hyponyms) between noun pairs.
They were able to verify the earlier work of Hearst
(1992) which found that certain patterns, e.g. X
and other Y, are strong indicators of hypernymy.
Using similar path features, we learn new patterns
to differentiate between more subtle relations. For
example, we learn the pattern separate X from Y is
highly indicative of the ¬ relation. We learn that
the pattern X including Y suggests A more than it
suggests ⌘ whereas the pattern X known as Y sug-
gests ⌘ more than A. Table 4 gives examples of
some of the paths most indicative of the ¬ relation.

Distributional features Lin and Pantel (2001)
attempted to mine inference rules from text by
finding paths in a dependency tree which connect
the same nouns. The intuition is that good para-
phrases should tend to modify and be modified by

in X and in Y in foods and in beverages
separate X from Y separate the old from the young
to X and/or to Y to the left or to the right
from X to Y from 7 a.m. to 10 p.m.
more/less X than Y more harm than good

Table 4: Top paths associated with the ¬ class.

the same words. Given context vectors, Lin and
Pantel (2001) used a symmetric similarity met-
ric (Lin, 1998) to find candidate paraphrases. We
build dependency context vectors for each word
in our data and compute both symmetric as well
as more recently proposed asymmetric similarity
measures (Weeds et al., 2004; Szpektor and Da-
gan, 2008; Clarke, 2009), which are potentially
better suited for identifying A paraphrases. Ta-
ble 3 gives a comparison of the pairs which are
considered “most similar” according to several of
these metrics.

6.2 Bilingual features

We explore a variety of bilingual features, which
we expect to provide complimentary signal to the
monolingual features. Each pair in PPDB is asso-
ciated with several paraphrase probabilities, which
are based on the probabilities of aligning each
word to the foreign “pivot” phrase (a foreign trans-
lation shared by the two phrases), computed as
described in Bannard and Callison-Burch (2005).
We also compute the total number of shared for-
eign translations for each phrase pair. Table 3
shows the highest ranked pairs by this bilingual
similarity score, in comparison to several of the
monolingual scores.

6.3 Analysis

Table 5 shows an ablation analysis. The bilingual
features are especially important for distinguish-
ing the⌘ class, and the path and WordNet features
are important for the ¬ class. The lexical features
show strong performance across the board; this is
often because they capture negation words (e.g.
no) and substring features (little boy @ boy).

1516
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分類器の性能

Figure 5: ENTAILMENT Figure 6: CONTRADICTION Figure 7: NEUTRAL

Figure 8: F1 measures achieved by Nutcracker on SICK test data when using various KBs. Baselines are in gray, this work
in blue, human references in gold. PPDB-XL refers to a run in which every pair which appears in PPDB is assumed to be
equivalent. PPDB-H refers to a run in which manual labels were used to generate axioms. PPDB+ refers to runs in which
the automatic classifications were used to generate axioms. In some cases, better proof coverage causes NC to find incorrect
proofs, illustrated by the decreased performance on CONTRADICTION when using PPDB-H. For example, using PPDB-H, NC
finds an inconsistency for the pair Someone is not playing piano./A person is playing a keyboard. Using the PPDB+, in which
piano/keyboard is falsely classified as #, NC fails to find a proof and so correctly guesses NEUTRAL.

Freq. Precision Recall F score
# 39% 84.22 87.55 85.85
⌘ 8% 70.36 83.07 76.19
A 26% 79.81 76.00 77.85
¬ 7% 73.73 73.33 73.53
⇠ 19% 70.57 63.70 66.96

Table 7: F1 measure (⇥100) achieved by entailment classifier
on the held out phrase pairs from the sentences in SICK test.

In the SemEval 2014 RTE challenge, this system
performed in the top 5 out of the more than 20 par-
ticipating systems (Marelli et al., 2014).

Given a text/hypothesis (T/H) pair, Nutcracker
(NC) uses the Boxer parser (Bos, 2008) to produce
a formal semantic representation of both T and H,
which it translates into standard first-order logic.
The logical formulae are passed to an off-the-shelf
theorem prover, which searches for a logical en-
tailment, and to a model builder, which attempts to
find a logical contradiction. By default, when the
system fails to find a proof for either entailment or
inconsistency, it predicts the most frequent class
(in our case, NEUTRAL). Therefore, NC relies
heavily on lexical entailment resources in order
to improve the recall of the theorem prover and
model builder.

Baselines The most frequent class baseline is
achieved by labeling every sentence pair as NEU-
TRAL, and results in an accuracy of 56%. A
stronger baseline is obtained by running NC alone,
without any external axioms; in this case, words
are only equivalent if they are lemma-identical.

As an additional baseline, we generate a “basic”

Acc. # Proofs Coverage
MFC 56.4 0 0%
NC alone 74.3 878 17.8%
+ WN 77.5 1,051 21.3%
+ PPDB-XL 77.5 1,091 22.1%
+ PPDB+ 78.0 1,197 24.3%
+ WN, PPDB+ 78.4 1,230 25.0%
+ WN, PPDB-H 78.6 1,232 25.0%

Table 8: Nutcracker’s overall system accuracy and proof cov-
erage when using different sources of axioms. Coverage is
measured as the percent of sentence pairs for which NC’s
theorem prover or model builder is able to find a complete
logical proof of either entailment or contradiction. When NC
fails to find either type of proof, it guesses the most frequent
class, NEUTRAL. NC alone uses no axioms. PPDB+ refers
to the axioms generated automatically using the classifier de-
scribed in this paper. PPDB-H refers axioms generated using
the human labels on which the classifier was trained.

PPDB-XL3 knowledge base (KB), which consists
exclusively of axioms expressing synonym rela-
tionships. I.e. for every pair of phrases hp1, p2i in
PPDB-XL, the PPDB-XL KB contains the equiv-
alence axiom syn(p1, p2). We also generate the
WordNet (WN) KB, which is the default used by
NC. This KB consists of axioms for all synonyms,
antonyms, and hypernyms in WN, which generate
syn, isnota, and isa axioms, respectively.

PPDB+ We convert our classifier’s predictions
into a set of axioms for NC. When our classifier
predicts⌘we generate an syn axiom, when it pre-
dicts A we generate an isa axiom, and when it
predicts ¬ we generate an isnota axiom. # and
⇠ do not generate any axioms. To handle the di-
rectionality of the A relation, we run the classifier

3We generated basic KBs for all six sizes of PPDB, but
XL performed best.
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• 全体で 79% accuracy
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素性の寄与

..

Table 1

mono Predicted label  
(using monolingual features)

Predicted label  
(using bilingual features)

Predicted label  
(using all features)

ind syn hyp exl oth ≣ ⊐ ¬ # ~ ≣ ⊐ ¬ # ~ ≣ ⊐ ¬ # ~
syn 1 3 1 0 0 4 ≣ 58% 20% 4% 15% 3% 62% 21% 5% 4% 8% 83% 10% 0% 2% 4%

hyp 2 3 7 0 1 13 ⊐ 20% 51% 3% 18% 7% 27% 5% 7% 7% 54% 6% 76% 2% 7% 8%

exl 1 1 1 1 0 4 ¬ 26% 14% 37% 17% 6% 6% 14% 30% 36% 14% 2% 8% 73% 13% 3%

ind 14 2 2 0 1 20 # 8% 13% 2% 71% 6% 1% 7% 6% 78% 8% 1% 4% 2% 88% 6%

oth 3 1 2 0 2 10 ~ 15% 21% 5% 36% 23% 8% 19% 9% 30% 35% 5% 10% 3% 18% 64%

     

bi      

ind syn hyp exl oth

syn 0 3 1 0 0 4

hyp 2 7 1 2 13 24

exl 1 0 1 1 1 4

ind 15 0 1 1 2 20

oth 3 1 2 1 3 10

both      

ind syn hyp exl oth

syn 9 368 46 1 19 443

hyp 97 83 1004 29 108 1321

exl 49 9 29 275 13 375

ind 1730 15 82 35 114 1976

oth 169 48 97 33 609 956

Tr
ue

 la
be

l

Figure 4: Confusion matrices for classifier trained using only monolingual features (distributional and path) versus bilingual
features (paraphrase and translation). True labels are shown along rows, predicted along columns. The matrix is normalized
along rows, so that the predictions for each (true) class sum to 100%. The confusion matrices reflect classifier’s performance
on held-out phrase pairs from the SICK test set.

� F1 when excluding
All Lex. Dist. Path Para. Tran. WN

# 79 -2.0 -0.2 -1.2 -1.7 -0.2 -0.1
⌘ 57 -3.5 +0.2 -0.7 -2.4 -3.7 +0.5
A 68 -4.6 -0.3 -0.8 -0.8 -0.7 -1.6
¬ 49 -4.0 -0.8 -2.9 +0.3 -0.0 -2.2
⇠ 51 -4.9 -0.5 -0.7 -1.2 -0.9 -0.3

Table 5: F1 measure (⇥100) achieved by entailment classifier
using 10-fold cross validation on the training data.

Table 3 shines some light onto the differences
between monolingual and bilingual similarities.
While the monolingual asymmetric metrics are
good for identifying A pairs, the symmetric met-
rics consistently identify ¬ pairs; none of the
monolingual scores we explored were effective
in making the subtle distinction between ⌘ pairs
and the other types of paraphrase. In contrast,
the bilingual similarity metric is fairly precise
for identifying ⌘ pairs, but provides less infor-
mation for distinguishing between types of non-
equivalent paraphrase. These differences are fur-
ther exhibited in the confusion matrices shown in
Figure 4; when the classifier is trained using only
monolingual features, it misclassifies 26% of ¬
pairs as ⌘, whereas the bilingual features make
this error only 6% of the time. On the other hand,
the bilingual features completely fail to predict the
A class, calling over 80% of such pairs ⌘ or ⇠.

7 Evaluation

7.1 Intrinsic Evaluation

We test the performance of our classifier intrinsi-
cally, through its ability to reproduce the human
labels for the phrase pairs from the SICK test sen-
tences. Table 7 shows the precision and recall
achieved by the classifier for each of our 5 en-

tailment classes. The classifier is able to achieve
an overall 79% accuracy, reaching >70% preci-
sion while maintaining good levels of recall on all
classes.

True Pred. N Example misclassifications
⇠ # 169 boy/little, an empy/the air
# ⇠ 114 little/toy, color/hair
A ⇠ 108 drink/juice, ocean/surf
A # 97 in front of/the face of, vehicle/horse
A ⌘ 83 cat/kitten, pavement/sidewalk
⌘ A 46 big/grand, a girl/a young lady
A ¬ 29 kid/teenager, no small/a large
¬ A 29 old man/young man, a car/a window
# ⌘ 15 a person/one, a crowd/a large
⌘ # 9 he is/man is, photo/still
⌘ ¬ 1 girl is/she is

Table 6: Example misclassifications from some of the most
frequent and most interesting error categories.

Figure 4 shows the classifier’s confusion ma-
trix and Table 6 shows some examples of common
and interesting error cases. The majority of errors
(26%) come from confusing the ⇠ class with the
# class. This mistake is not too concerning from
an RTE perspective since ⇠ can be treated as a
special case of # (Section 5). There are very few
cases in which the classifier makes extreme errors,
e.g. confusing ⌘ with ¬ or with #; some interest-
ing examples of such errors arise when the phrases
contain pronouns (e.g. girl ⌘ she) or when the
relation uses a highly infrequent word sense (e.g.
photo ⌘ still).

7.2 The Nutcracker RTE System
To further test our classifier, we evaluate the use-
fulness of the automatic entailment predictions in
a downstream RTE task. We run our experiments
using Nutcracker, a state-of-the-art RTE system
based on formal semantics (Bjerva et al., 2014).
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Predicted label  
(using bilingual features)

Predicted label  
(using all features)

ind syn hyp exl oth ≣ ⊐ ¬ # ~ ≣ ⊐ ¬ # ~ ≣ ⊐ ¬ # ~
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oth 3 1 2 0 2 10 ~ 15% 21% 5% 36% 23% 8% 19% 9% 30% 35% 5% 10% 3% 18% 64%

     

bi      

ind syn hyp exl oth

syn 0 3 1 0 0 4
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ind 15 0 1 1 2 20

oth 3 1 2 1 3 10
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Figure 4: Confusion matrices for classifier trained using only monolingual features (distributional and path) versus bilingual
features (paraphrase and translation). True labels are shown along rows, predicted along columns. The matrix is normalized
along rows, so that the predictions for each (true) class sum to 100%. The confusion matrices reflect classifier’s performance
on held-out phrase pairs from the SICK test set.

� F1 when excluding
All Lex. Dist. Path Para. Tran. WN

# 79 -2.0 -0.2 -1.2 -1.7 -0.2 -0.1
⌘ 57 -3.5 +0.2 -0.7 -2.4 -3.7 +0.5
A 68 -4.6 -0.3 -0.8 -0.8 -0.7 -1.6
¬ 49 -4.0 -0.8 -2.9 +0.3 -0.0 -2.2
⇠ 51 -4.9 -0.5 -0.7 -1.2 -0.9 -0.3

Table 5: F1 measure (⇥100) achieved by entailment classifier
using 10-fold cross validation on the training data.

Table 3 shines some light onto the differences
between monolingual and bilingual similarities.
While the monolingual asymmetric metrics are
good for identifying A pairs, the symmetric met-
rics consistently identify ¬ pairs; none of the
monolingual scores we explored were effective
in making the subtle distinction between ⌘ pairs
and the other types of paraphrase. In contrast,
the bilingual similarity metric is fairly precise
for identifying ⌘ pairs, but provides less infor-
mation for distinguishing between types of non-
equivalent paraphrase. These differences are fur-
ther exhibited in the confusion matrices shown in
Figure 4; when the classifier is trained using only
monolingual features, it misclassifies 26% of ¬
pairs as ⌘, whereas the bilingual features make
this error only 6% of the time. On the other hand,
the bilingual features completely fail to predict the
A class, calling over 80% of such pairs ⌘ or ⇠.

7 Evaluation

7.1 Intrinsic Evaluation

We test the performance of our classifier intrinsi-
cally, through its ability to reproduce the human
labels for the phrase pairs from the SICK test sen-
tences. Table 7 shows the precision and recall
achieved by the classifier for each of our 5 en-

tailment classes. The classifier is able to achieve
an overall 79% accuracy, reaching >70% preci-
sion while maintaining good levels of recall on all
classes.

True Pred. N Example misclassifications
⇠ # 169 boy/little, an empy/the air
# ⇠ 114 little/toy, color/hair
A ⇠ 108 drink/juice, ocean/surf
A # 97 in front of/the face of, vehicle/horse
A ⌘ 83 cat/kitten, pavement/sidewalk
⌘ A 46 big/grand, a girl/a young lady
A ¬ 29 kid/teenager, no small/a large
¬ A 29 old man/young man, a car/a window
# ⌘ 15 a person/one, a crowd/a large
⌘ # 9 he is/man is, photo/still
⌘ ¬ 1 girl is/she is

Table 6: Example misclassifications from some of the most
frequent and most interesting error categories.

Figure 4 shows the classifier’s confusion ma-
trix and Table 6 shows some examples of common
and interesting error cases. The majority of errors
(26%) come from confusing the ⇠ class with the
# class. This mistake is not too concerning from
an RTE perspective since ⇠ can be treated as a
special case of # (Section 5). There are very few
cases in which the classifier makes extreme errors,
e.g. confusing ⌘ with ¬ or with #; some interest-
ing examples of such errors arise when the phrases
contain pronouns (e.g. girl ⌘ she) or when the
relation uses a highly infrequent word sense (e.g.
photo ⌘ still).

7.2 The Nutcracker RTE System
To further test our classifier, we evaluate the use-
fulness of the automatic entailment predictions in
a downstream RTE task. We run our experiments
using Nutcracker, a state-of-the-art RTE system
based on formal semantics (Bjerva et al., 2014).
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RTEタスクによる評価

• Nutcracker
◦ State-of-the-art formal semantics based RTE system

• Baseline
◦ MFC:常に neutralに分類
◦ NC alone: 外部リソースなし（lemmaが同一なら等価）
◦ +WN: WordNetの関係を使用
◦ +PPDB-XL: PPDB-XLをすべて等価関係として使用

• PPDB+
◦ 分類されたラベルを使用

• PPDB-H
◦ 人手でアノテーションされたラベルを使用
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RTEタスクによる評価

Figure 5: ENTAILMENT Figure 6: CONTRADICTION Figure 7: NEUTRAL

Figure 8: F1 measures achieved by Nutcracker on SICK test data when using various KBs. Baselines are in gray, this work
in blue, human references in gold. PPDB-XL refers to a run in which every pair which appears in PPDB is assumed to be
equivalent. PPDB-H refers to a run in which manual labels were used to generate axioms. PPDB+ refers to runs in which
the automatic classifications were used to generate axioms. In some cases, better proof coverage causes NC to find incorrect
proofs, illustrated by the decreased performance on CONTRADICTION when using PPDB-H. For example, using PPDB-H, NC
finds an inconsistency for the pair Someone is not playing piano./A person is playing a keyboard. Using the PPDB+, in which
piano/keyboard is falsely classified as #, NC fails to find a proof and so correctly guesses NEUTRAL.

Freq. Precision Recall F score
# 39% 84.22 87.55 85.85
⌘ 8% 70.36 83.07 76.19
A 26% 79.81 76.00 77.85
¬ 7% 73.73 73.33 73.53
⇠ 19% 70.57 63.70 66.96

Table 7: F1 measure (⇥100) achieved by entailment classifier
on the held out phrase pairs from the sentences in SICK test.

In the SemEval 2014 RTE challenge, this system
performed in the top 5 out of the more than 20 par-
ticipating systems (Marelli et al., 2014).

Given a text/hypothesis (T/H) pair, Nutcracker
(NC) uses the Boxer parser (Bos, 2008) to produce
a formal semantic representation of both T and H,
which it translates into standard first-order logic.
The logical formulae are passed to an off-the-shelf
theorem prover, which searches for a logical en-
tailment, and to a model builder, which attempts to
find a logical contradiction. By default, when the
system fails to find a proof for either entailment or
inconsistency, it predicts the most frequent class
(in our case, NEUTRAL). Therefore, NC relies
heavily on lexical entailment resources in order
to improve the recall of the theorem prover and
model builder.

Baselines The most frequent class baseline is
achieved by labeling every sentence pair as NEU-
TRAL, and results in an accuracy of 56%. A
stronger baseline is obtained by running NC alone,
without any external axioms; in this case, words
are only equivalent if they are lemma-identical.

As an additional baseline, we generate a “basic”

Acc. # Proofs Coverage
MFC 56.4 0 0%
NC alone 74.3 878 17.8%
+ WN 77.5 1,051 21.3%
+ PPDB-XL 77.5 1,091 22.1%
+ PPDB+ 78.0 1,197 24.3%
+ WN, PPDB+ 78.4 1,230 25.0%
+ WN, PPDB-H 78.6 1,232 25.0%

Table 8: Nutcracker’s overall system accuracy and proof cov-
erage when using different sources of axioms. Coverage is
measured as the percent of sentence pairs for which NC’s
theorem prover or model builder is able to find a complete
logical proof of either entailment or contradiction. When NC
fails to find either type of proof, it guesses the most frequent
class, NEUTRAL. NC alone uses no axioms. PPDB+ refers
to the axioms generated automatically using the classifier de-
scribed in this paper. PPDB-H refers axioms generated using
the human labels on which the classifier was trained.

PPDB-XL3 knowledge base (KB), which consists
exclusively of axioms expressing synonym rela-
tionships. I.e. for every pair of phrases hp1, p2i in
PPDB-XL, the PPDB-XL KB contains the equiv-
alence axiom syn(p1, p2). We also generate the
WordNet (WN) KB, which is the default used by
NC. This KB consists of axioms for all synonyms,
antonyms, and hypernyms in WN, which generate
syn, isnota, and isa axioms, respectively.

PPDB+ We convert our classifier’s predictions
into a set of axioms for NC. When our classifier
predicts⌘we generate an syn axiom, when it pre-
dicts A we generate an isa axiom, and when it
predicts ¬ we generate an isnota axiom. # and
⇠ do not generate any axioms. To handle the di-
rectionality of the A relation, we run the classifier

3We generated basic KBs for all six sizes of PPDB, but
XL performed best.
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• アノテーションを使ったときとそれほど変わらない精度
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まとめ

• PPDBにラベルを付けた
• RTEの性能向上に寄与した
• アノテーションされた PPDBを配布（PPDB2.0として）

◦ http://www.seas.upenn.edu/~epavlick/data.html
◦ Preliminary releaseだそう
◦ “The full 2.0 release should be posted by the first
week of August.”
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分類誤りの例

Table 1

mono Predicted label  
(using monolingual features)

Predicted label  
(using bilingual features)

Predicted label  
(using all features)

ind syn hyp exl oth ≣ ⊐ ¬ # ~ ≣ ⊐ ¬ # ~ ≣ ⊐ ¬ # ~
syn 1 3 1 0 0 4 ≣ 58% 20% 4% 15% 3% 62% 21% 5% 4% 8% 83% 10% 0% 2% 4%

hyp 2 3 7 0 1 13 ⊐ 20% 51% 3% 18% 7% 27% 5% 7% 7% 54% 6% 76% 2% 7% 8%

exl 1 1 1 1 0 4 ¬ 26% 14% 37% 17% 6% 6% 14% 30% 36% 14% 2% 8% 73% 13% 3%

ind 14 2 2 0 1 20 # 8% 13% 2% 71% 6% 1% 7% 6% 78% 8% 1% 4% 2% 88% 6%

oth 3 1 2 0 2 10 ~ 15% 21% 5% 36% 23% 8% 19% 9% 30% 35% 5% 10% 3% 18% 64%

     

bi      

ind syn hyp exl oth

syn 0 3 1 0 0 4

hyp 2 7 1 2 13 24

exl 1 0 1 1 1 4

ind 15 0 1 1 2 20

oth 3 1 2 1 3 10

both      

ind syn hyp exl oth

syn 9 368 46 1 19 443

hyp 97 83 1004 29 108 1321

exl 49 9 29 275 13 375

ind 1730 15 82 35 114 1976

oth 169 48 97 33 609 956
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Figure 4: Confusion matrices for classifier trained using only monolingual features (distributional and path) versus bilingual
features (paraphrase and translation). True labels are shown along rows, predicted along columns. The matrix is normalized
along rows, so that the predictions for each (true) class sum to 100%. The confusion matrices reflect classifier’s performance
on held-out phrase pairs from the SICK test set.

� F1 when excluding
All Lex. Dist. Path Para. Tran. WN

# 79 -2.0 -0.2 -1.2 -1.7 -0.2 -0.1
⌘ 57 -3.5 +0.2 -0.7 -2.4 -3.7 +0.5
A 68 -4.6 -0.3 -0.8 -0.8 -0.7 -1.6
¬ 49 -4.0 -0.8 -2.9 +0.3 -0.0 -2.2
⇠ 51 -4.9 -0.5 -0.7 -1.2 -0.9 -0.3

Table 5: F1 measure (⇥100) achieved by entailment classifier
using 10-fold cross validation on the training data.

Table 3 shines some light onto the differences
between monolingual and bilingual similarities.
While the monolingual asymmetric metrics are
good for identifying A pairs, the symmetric met-
rics consistently identify ¬ pairs; none of the
monolingual scores we explored were effective
in making the subtle distinction between ⌘ pairs
and the other types of paraphrase. In contrast,
the bilingual similarity metric is fairly precise
for identifying ⌘ pairs, but provides less infor-
mation for distinguishing between types of non-
equivalent paraphrase. These differences are fur-
ther exhibited in the confusion matrices shown in
Figure 4; when the classifier is trained using only
monolingual features, it misclassifies 26% of ¬
pairs as ⌘, whereas the bilingual features make
this error only 6% of the time. On the other hand,
the bilingual features completely fail to predict the
A class, calling over 80% of such pairs ⌘ or ⇠.

7 Evaluation

7.1 Intrinsic Evaluation

We test the performance of our classifier intrinsi-
cally, through its ability to reproduce the human
labels for the phrase pairs from the SICK test sen-
tences. Table 7 shows the precision and recall
achieved by the classifier for each of our 5 en-

tailment classes. The classifier is able to achieve
an overall 79% accuracy, reaching >70% preci-
sion while maintaining good levels of recall on all
classes.

True Pred. N Example misclassifications
⇠ # 169 boy/little, an empy/the air
# ⇠ 114 little/toy, color/hair
A ⇠ 108 drink/juice, ocean/surf
A # 97 in front of/the face of, vehicle/horse
A ⌘ 83 cat/kitten, pavement/sidewalk
⌘ A 46 big/grand, a girl/a young lady
A ¬ 29 kid/teenager, no small/a large
¬ A 29 old man/young man, a car/a window
# ⌘ 15 a person/one, a crowd/a large
⌘ # 9 he is/man is, photo/still
⌘ ¬ 1 girl is/she is

Table 6: Example misclassifications from some of the most
frequent and most interesting error categories.

Figure 4 shows the classifier’s confusion ma-
trix and Table 6 shows some examples of common
and interesting error cases. The majority of errors
(26%) come from confusing the ⇠ class with the
# class. This mistake is not too concerning from
an RTE perspective since ⇠ can be treated as a
special case of # (Section 5). There are very few
cases in which the classifier makes extreme errors,
e.g. confusing ⌘ with ¬ or with #; some interest-
ing examples of such errors arise when the phrases
contain pronouns (e.g. girl ⌘ she) or when the
relation uses a highly infrequent word sense (e.g.
photo ⌘ still).

7.2 The Nutcracker RTE System
To further test our classifier, we evaluate the use-
fulness of the automatic entailment predictions in
a downstream RTE task. We run our experiments
using Nutcracker, a state-of-the-art RTE system
based on formal semantics (Bjerva et al., 2014).
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分類誤りの例

# ⌘ A ¬ ⇠
38% 8% 26% 7% 18%

#
1730 9 97 49 169

40% (clear,very) (cover,front) (hand,male) (drive,park) (child,park)
(exhibit,hold) (photo,still) (man,police) (female,man) (crowded,many)
(walk,woman) (woman who,woman with) (mountain,side) (flag,ship) (note,write)

⌘ 15 368 83 9 48

10% (a big,very) (a small,the little) (a gun,a weapon) (another man,one man) (a child,kid in)
(a lot,long) (away,out) (a weapon,gun) (bike,biking) (and hold,and take)

(face a,front of) (block,slab) (legs,leg) (young girl,young woman) (his arms,his hands)

A 82 46 1004 29 97

24% (device,guy) (a call,phone call) (camera,webcam) (a car,a window) (a lady,girl)
(something,talk) (a group,bunch of) (kid,other child) (a female,a man) (field,playing)

(the man,the phone) (another man,man) (kid,the daughter) (arms,his hands) (girl,the lady)

¬ 35 1 29 275 33

7% (a ball,a man) (girl is,she is) (a boy,a teenager) (cat,dog) (dog,owner)
(a boy,little) (a kid,daughter) (morning,night) (ground,water)

(number,woman) (kid,little girl) (type,write) (hat,vest)

⇠ 114 19 108 13 609

17% (leg,soccer) (chef,cook) (cut,saw) (a boat,sail) (ice,rink)
(perform,run) (fight,match) (face,hair) (dress,suit) (snow,snowy)
(sail,water) (race,ride) (the kid,the little) (light,the dark) (study by,study the)

Figure 9: Confusion matrix for classifier (with all features) on SICK test set. True labels and their distribution are shown along
the columns, predicted along the rows.
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