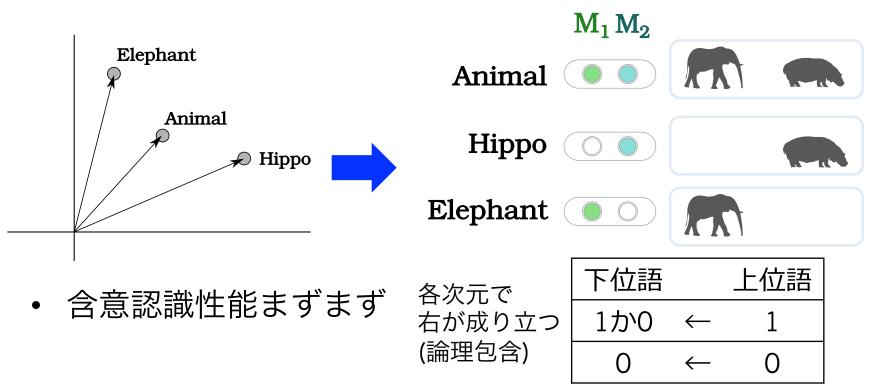
Deriving Boolean Structures from Distributional Vectors

<u>Germán Kruszewski, Denis Paperno, Marco Baroni</u> <u>TACL 2015, pages 375-388</u>

http://aclweb.org/anthology/Q15-1027

読み手: 東北大学 情報科学研究科 乾・岡崎研究室 修士1年 小林 颯介

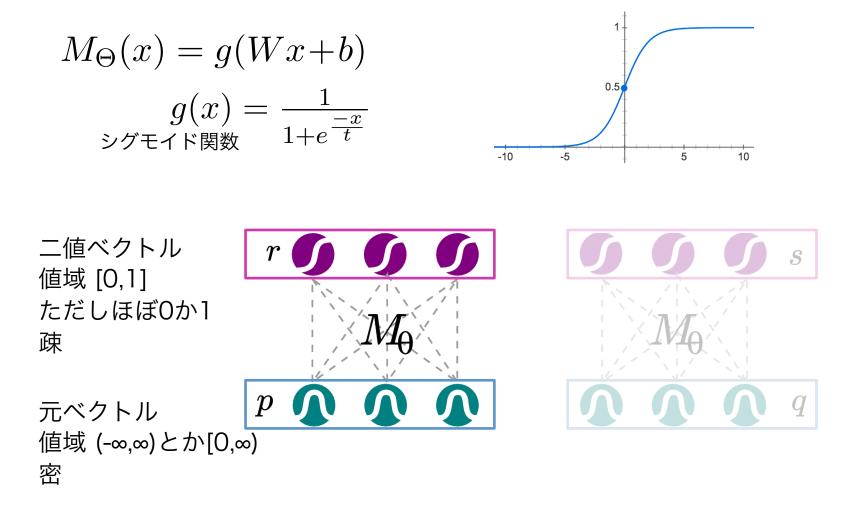
- 単語の Distibutional (real-valued) vector を 単語や文の Boolean vector へ変換
 - 各次元の値の包含で Entailment が判定可能なように

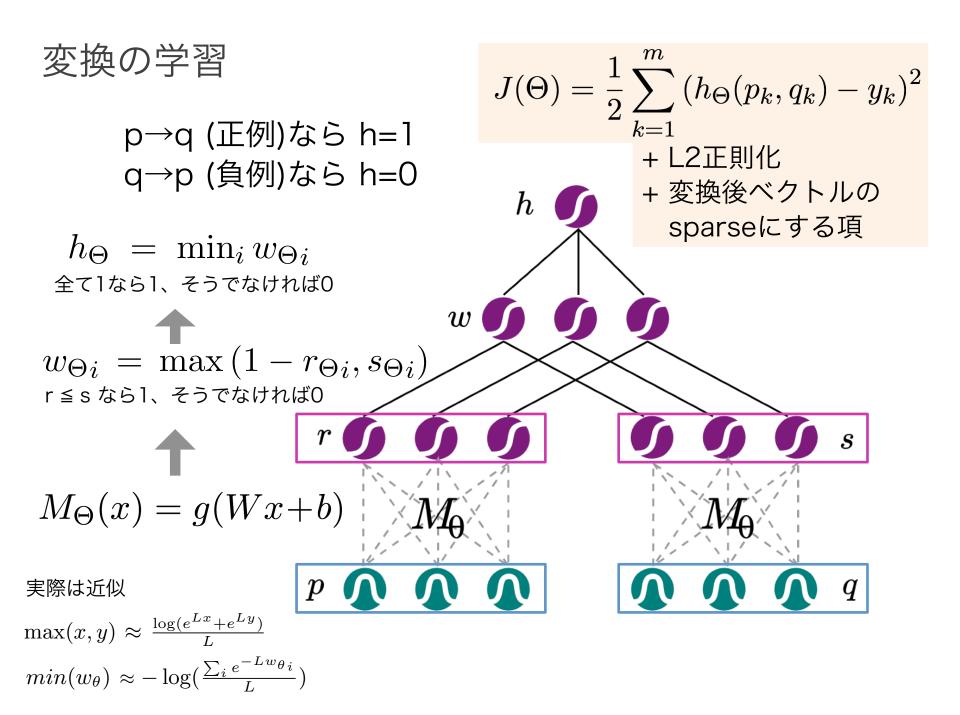


以降、図表は論文より引用 (一部改変)

変換

線型写像と活性化関数で二値に変換





実際(テスト時)の判定

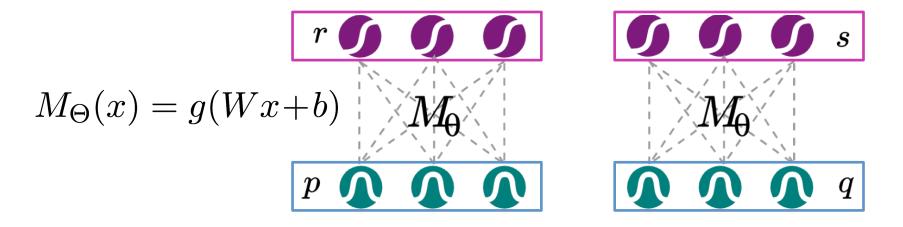
$$BI(u,v) = \frac{\sum_{i} \operatorname{rnd}(M_{\Theta}(u)_{i}) \operatorname{rnd}(M_{\Theta}(v)_{i})}{\sum_{i} \operatorname{rnd}(M_{\Theta}(u)_{i})}$$

 $\operatorname{rnd}(x) = 1 [x > 0.5]$

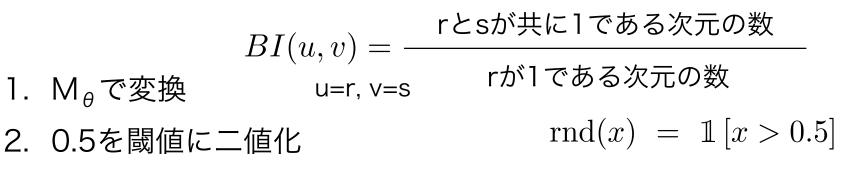
2. 0.5を閾値に二値化

1. M_θで変換

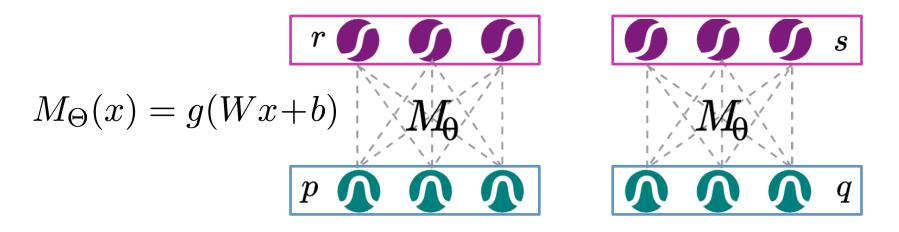
3. BIスコア (本論文考案) を求めて、ある閾値で判定



実際(テスト時)の判定



3. BIスコア (本論文考案) を求めて、ある閾値で判定



単語ペア 実験設定

ベクトル

1. C-BOW (次元数: 400→1000)

- 2. PPMI-SVD (次元数: 300→100)
- 3. TypeDM (次元数: 400?→500)

(Baroni, 2010) 係り受けパスの種類数 から生成

判定手法

1. BDSM (提案手法) 2. 元のベクトルで SVM-2次カーネル 3. 元のベクトルから直接スコアを算出する手法5種 e.g., $weedsPrec(u,v) = \frac{\sum_{i} \mathbbm{1}[v_i > 0] \cdot u_i}{\sum_{i} u_i}$

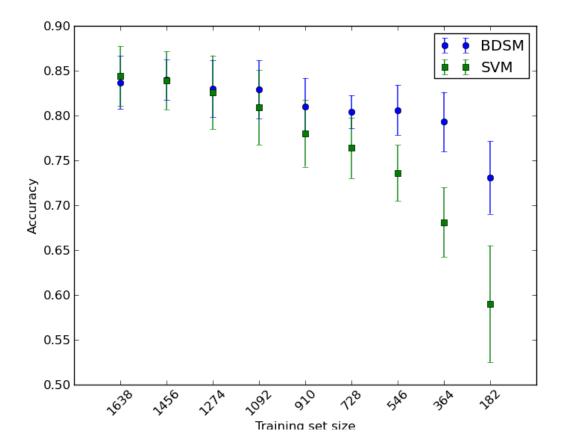
単語ペア データセット

データ	負例	特徴		
LEDS-core 911:911	1/3:下,上位語 2/3: ランダム	類似度見るだけでも割と楽		
LEDS-dir 911:911	下,上位語	各単語(個別)の抽象度を 見るだけでいいかも		
BLESS-coord 1236:3526	同格 (coordinate)	むずかしい		
BLESS-mero 1236:2943	部分-全体	29/1.000		

学習は		Positive	Negative
・LEDSは 10-交差検定 ・BLESSは	LEDS	elephant \rightarrow animal	ape → book
	LEDS-dir		animal → elephant
LEDS-core	BLESS-coord	elephant \rightarrow herbivore	elephant → hippo
(重複正例除く)	BLESS-mero		elephant → trunk

単語ペア結果	model	LEDS		BLESS	
		core	dir	coord	mero
 提案手法はSVMに 	count				
勝ったり負けたり	clarkeDE	77	63	27	36
• 難しい	weedsPrec	79	75	27	33
	cosWeeds	79	63	26	35
BLESS-mero	invCL	77	63	27	36
では大差で勝利	balAPinc	79	66	26	36
	SVM (count)	84	90	55	57
	BDSM (count)	83	87	53	55
 元ベクトルから 	predict				
スコア算出系は弱い	SVM (predict)	71	85	70	55
	BDSM (predict)	80	79	76	68
		TypeDI	И		
	SVM (TypeDM)	78	83	56	60
	BDSM (TypeDM)	83	71	31	59

BDSMは**少量のデータでも学習効果が高い** 1638→364 (2/9) にしても性能は 83%→約79%



文含意 実験設定

データ: SICK (Marelli et al., 2014), 訓練:4500, テスト:4927

文の構成法

 1. 全単語ベクトル総和
 2. Practical lexical function model (Paperno et al., 2014)

Positive	Negative
in the woods \rightarrow The man is hiking in the woods	A group of scouts are camping in the grass → A group of scouts are hiking through the grass

比較手法

1. 全部含意
 2. 全部非含意
 3. 単語の重なり数でスコア
 4. BDSM (提案手法)
 5. SVM

7	dogs	\vec{dogs}
	run	$r \vec{u} n, r \vec{u} n$
	dogs run	$\vec{run} + \vec{run} \times \vec{dog}$
	house	house
	big	$ec{big},ec{big}$
	big house	$\vec{big} + \vec{big} \times \vec{house}$

(Paperno et al., 2014)より引用

文含意 結果

• BDSMはSVMに勝利

なんだかなあ

Sycophantic 単なる総和で文構成 Majority $\mathbf{0}$ $\mathbf{0}$ WO した方が良い結果 SVM (add) (語順考慮なし) BDSM (add) SVM (plf) BDSM (plf) • 単語重なり数 (WO) SVM(add) + WOBDSM(add) + WOでも結構匹敵する SVM(plf) + WO性能になっていて BDSM(plf) + WO

model

Ρ

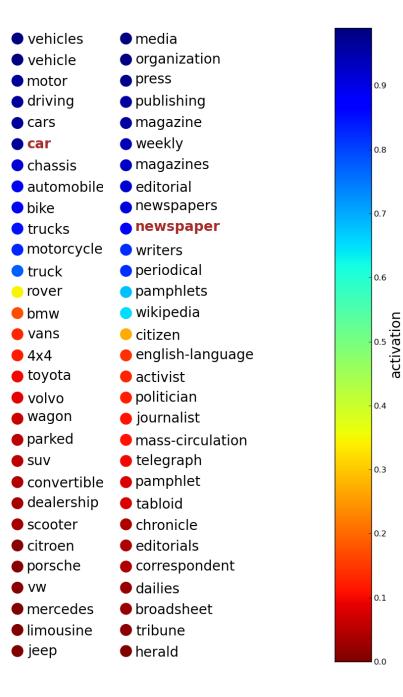
R

F1

Α

議論・考察

- 活性化率 (1値の次元の率)
 - word2vec上での car, newspaperの 隣接30単語
- media, press, volvoなど
 はそれ自体は教師なし
- ・ 活性化率は抽象度と相関あり
 - WordNetでの深さ
 - 抽象度辞書 (Brysbaert et al., 2013)





- thing, anythingなどは全次元1になったが、benefit, achieveなど怪しい単語も全次元1だった (計768語)
 - そもそも次元数少ないから表現力が厳しい
 - そもそも訓練データが具体名詞ばかり
- 外延的な解釈が"そこそこ"可能
 - 類似度が表示対象の集合の重なりの量に対応
 元のベクトルに比べて
 - co-hyponym は類似度が低くなる
 - 人名同士 は類似度が低くなる
 - synonym は類似度が高くなる
 - hypo/hypernym まで類似度が低くなってしまった

- 分布意味論由来のベクトルを
 <u>外延的な意味成分の二値ベクトル</u>へと
 変換するニューラルネットの学習法を提案した
 - 意味の含意関係認識において
 より少ない教師データで効率的に学習可能
 - 単なる類似度では解けない精密な識別能力が 求められるタスクでSVMを上回った

おまけ 個人的感想

- コンセプトとモデルがシンプルに直結していて納得感
 - BIスコアはちょっと直感的でない
- 定量評価の実験には多少のもやもや
 - 勝ったり負けたりの割にその原因究明は薄かった

- 定性的な観察の結果はなかなか興味深い
 - 各次元個別での解釈は可能かも知りたかった

 WordNetまるごとなどでしっかり学習したら エンコード性能はかなり高まるのだろうか