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•  単語の Distibutional (real-valued) vector を 
単語や文の Boolean vector へ変換 
•  各次元の値の包含で Entailment が判定可能なように 

•  含意認識性能まずまず 

要約 
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下位語 上位語 
1か0 ← 1 
0 ← 0 

各次元で 
右が成り立つ 
(論理包含)	

以降、図表は論文より引用 (一部改変) 



線型写像と活性化関数で二値に変換 

変換 
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元ベクトル 
値域 (-∞,∞)とか[0,∞) 
密 

二値ベクトル 
値域 [0,1] 
ただしほぼ0か1 
疎 

シグモイド関数 

to a linear transformation: M⇥(x) = g(Wx+b) and
stands for an extra “temper-
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p→q (正例)なら h=1 
q→p (負例)なら h=0 

変換の学習 

w⇥i = max (1� r⇥i, s⇥i)
1

if , then
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pute h⇥ = miniw⇥i. This is a way to compute
the conjunction over the whole previous layer, thus
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In practice, we use a differentiable approximation given
by max(x, y) ⇡ log(e
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number. We set L = 100, which yields results accurate enough
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Analogously, we use the differentiable approximation
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x, y) ⇡
number. We set
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実際は近似 

+ L2正則化 
+ 変換後ベクトルの 
　sparseにする項 

全て1なら1、そうでなければ0 

r ≦ s なら1、そうでなければ0 



実際(テスト時)の判定 

a parameter �. The second one is a term that en-
forces sparsity of the resulting representations based
on some desired level ⇢.

3.1 Assessing entailment with BDSM
During training, positive pairs p ) q are required to
satisfy full feature inclusion in their mapped repre-
sentations (all the active features of M⇥(vp) must
also be in M⇥(vq)). At test time, we relax this
condition to grant the model some flexibility. Con-
cretely, entailment is quantified by the BI (“Boolean
Inclusion”) function, counting the proportion of fea-
tures in the antecedent that are also present in the
consequent after binarizing the outputs:

BI(u, v) =

P
i rnd(M⇥(u)i) rnd(M⇥(v)i)P

i rnd(M⇥(u)i)

where rnd(x) = [x > 0.5]. The 0.5 threshold
comes from construing each of the features in the
output of M as probabilities. Of course, other for-
mulas could be used to quantify entailment through
BDSM, but we leave this to further research.

Since BI returns continuous values, we use devel-
opment data to calculate a threshold e above which
an entailment response is returned.

4 Evaluation setup

4.1 Distributional semantic spaces
Our approach is agnostic to the kind of distribu-
tional representation used, since it doesn’t modify
the input vectors, but builds on top of them. Still,
it is interesting to test whether specific kinds of dis-
tributional vectors are better suited to act as input
to BDSM. For our experiments, we use both the
count and predict distributional semantic vectors of
Baroni et al. (2014b).3 These vectors were shown
by their creators to reach the best average perfor-
mance (among comparable alternatives) on a variety
of semantic relatedness/similarity tasks, such as syn-
onymy detection, concept categorization and anal-
ogy solving. If the same vectors turn out to also
serve as good inputs for constructing Boolean rep-
resentations, we are thus getting the best of both
worlds: distributional vectors with proven high per-
formance on relatedness/similarity tasks which can

3
http://clic.cimec.unitn.it/composes/

semantic-vectors.html

be mapped into a Boolean space to tackle logic-
related tasks. We also experiment with the pre-
trained vectors from TypeDM (Baroni and Lenci,
2010),4 which are built by exploiting syntactic infor-
mation, and should have different qualitative proper-
ties from the window-based approaches.

The count vectors of Baroni and colleagues are
built from a 2-word-window co-occurrence matrix
of 300k lower-cased words extracted from a 2.8 bil-
lion tokens corpus. The matrix is weighted using
positive Pointwise Mutual Information (Church and
Hanks, 1990). We use the full 300k⇥300k positive
PMI matrix to compute the asymmetric similarity
measures discussed in the next section, since the lat-
ter are designed for non-negative, sparse, full-rank
representations. Due to efficiency constraints, for
BDSM and SVM (also presented next), the matrix
is reduced to 300 dimensions by Singular Value De-
composition (Schütze, 1997). The experiments of
Baroni et al. (2014b) with these very same vectors
suggest that SVD is lowering performance some-
what. So we are, if anything, giving an advantage
to the simple asymmetric measures.

The predict vectors are built with the word2vec
tool (Mikolov et al., 2013) on the same corpus and
for the same vocabulary as the count vectors, using
the CBOW method. They are constructed by as-
sociating 400-dimensional vectors to each word in
the vocabulary and optimizing a single-layer neural
network that, while traversing the training corpus,
tries to predict the word in the center of a 5-word
window from the vectors of those surrounding it.
The word2vec subsampling parameter (that down-
weights the impact of frequent words) is set to 1e�5.

Finally, TypeDM vectors were induced from the
same corpus by taking into account the dependency
links of a word with its sentential collocates. See
Baroni and Lenci (2010) for details.

Composition methods For sentence entailment
(Section 6), we need vectors for sentences, rather
than words. We derive them from the count vec-
tors compositionally in two different ways.5 First,
we use the additive model (add), under which we

4
http://clic.cimec.unitn.it/dm

5A reviewer notes that composition rules could also be in-
duced directly on the entailment task. This is an interesting pos-
sibility, but note that it would probably require a larger training
set than we have available. Moreover, from a theoretical per-
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1.  Mθで変換 
2.  0.5を閾値に二値化 
3.  BIスコア (本論文考案) 

を求めて、ある閾値で判定 

u=r, v=s	
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1.  Mθで変換 
2.  0.5を閾値に二値化 
3.  BIスコア (本論文考案) 

を求めて、ある閾値で判定 

u=r, v=s	

rとsが共に1である次元の数 

rが1である次元の数 



ベクトル 
1. C-BOW    (次元数: 400→1000) 
2. PPMI-SVD  (次元数: 300→100) 
3. TypeDM    (次元数: 400?→500) 
    (Baroni, 2010) 係り受けパスの種類数 から生成 

判定手法 
1. BDSM (提案手法) 
2. 元のベクトルで SVM-2次カーネル 
3. 元のベクトルから直接スコアを算出する手法5種 
    e.g., 

単語ペア　実験設定 

sum the vectors of the words they contain to ob-
tain sentence representations (Mitchell and Lapata,
2010). This approach, however, does not take into
account word order, which is of obvious relevance to
determining entailment between phrases. For exam-
ple, a dog chases a cat does not entail a cat chases
a dog, whereas each sentence entails itself. There-
fore, we also used sentence vectors derived with the
linguistically-motivated “practical lexical function”
model (plf), that takes syntactic structure and word
order into account (Paperno et al., 2014). In short,
words acting as argument-taking functions (such as
verbs) are not only associated to vectors, but also to
one matrix for each argument they take (e.g., each
transitive verb comes with a subject and an object
matrix). Vector representations of arguments are re-
cursively multiplied by function matrices, following
the syntactic structure of a sentence. The final sen-
tence representation is obtained by summing all the
resulting vectors. We used pre-trained vector and
matrix representations provided by Paperno and col-
leagues. Their setup is very comparable to the one of
our count vectors: same source corpus, similar win-
dow size (3-word-window), positive PMI, and SVD
reduction to 300 dimensions. The only notable dif-
ferences are a vocabulary cut-off to the top 30K most
frequent words in the corpus, and the use of content
words only as windows.

4.2 Alternative entailment measures

As reviewed in Section 2, the literature on entail-
ment with distributional methods has been domi-
nated by the idea of feature inclusion. We thus com-
pare BDSM to a variety of state-of-the art asym-
metric similarity measures based on the distribu-
tional inclusion hypothesis (the dimensions of hy-
ponym/antecedent vectors are included in those of
their hypernyms/consequents). We consider the
measures described in Lenci and Benotto (2012)
(clarkeDE, weedsPrec, cosWeeds, and invCL), as
well as balAPinc, which was shown to achieve op-
timal performance by Kotlerman et al. (2010). All
these measures provide a score that is higher when
a significant part of the candidate antecedent fea-

spective, we are interested in testing general methods of com-
position that are also good for other tasks (e.g., modeling sen-
tence similarity), rather than developing ad-hoc composition
rules specifically for entailment.

tures (=dimensions) are included in those of the con-
sequent. The measures are only meaningful when
computed on a non-negative sparse space. There-
fore, we evaluate them using the full count space.
As an example, weedsPrec is computed as follows:

weedsPrec(u, v) =

P
i [vi > 0] · uiP

i ui

where u is the distributional vector of the an-
tecedent, v that of the consequent.6

Finally, we implement a full-fledged supervised
machine learning approach directly operating on
distributional representations. Following the re-
cent literature reviewed in Section 2 above, we
train a Support Vector Machine (SVM) (Cristianini
and Shawe-Taylor, 2000) on the concatenated dis-
tributional vectors of the training pairs, and judge
the presence of entailment for a test pair based on
the same concatenated representation (the results of
Weeds et al. (2014) and Roller et al. (2014) suggest
that concatenation is the most reliable way to con-
struct SVM input representations that take both the
antecedent and the consequent into account).

4.3 Data sets
Lexical entailment We test the models on bench-
marks derived from two existing resources. We used
the Lexical Entailment Data Set (LEDS) from Ba-
roni et al. (2012) that contains both entailing (ob-
tained by extracting hyponym-hypernym links from
WordNet) and non-entailing pairs of words (con-
structed by reversing a third of the pairs and ran-
domly shuffling the rest). We edited this resource by
removing dubious data from the entailing pairs (e.g.,
logo/signal, mankind/mammal, geek/performer) and
adding more negative cases (non-entailing pairs),
obtained by shuffling words in the positive exam-
ples. We derived two balanced subsets: a develop-
ment set (LEDS-dev) with 236 pairs in each class
and a core set with 911 pairs in each class (LEDS-
core), such that there is no lexical overlap between
the positive classes of each set, and negative class
overlap is minimized. Since a fair amount of neg-
ative cases were obtained by randomly shuffling
words from the positive examples, leading to many
unrelated couples, just pair similarity might be a

6BI is equivalent to weedsPrec in Boolean space.
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単語ペア　データセット 
データ 負例 特徴 

LEDS-core 
911:911 

1/3:下,上位語 
2/3: ランダム 類似度見るだけでも割と楽 

LEDS-dir 
911:911 下,上位語 各単語(個別)の抽象度を 

見るだけでいいかも 
BLESS-coord 
1236:3526 

同格 
(coordinate) むずかしい BLESS-mero 

1236:2943 部分-全体 

 

学習は 
・LEDSは 
　10-交差検定 
・BLESSは 
　LEDS-core 
(重複正例除く) 

Positive Negative

LEDS elephant ! animal ape 9 book

LEDS-dir animal 9 elephant

BLESS-coord elephant ! herbivore elephant 9 hippo

BLESS-mero elephant 9 trunk

Table 1: Lexical entailment examples.

very strong baseline here. We thus explore a more
challenging setup, LEDS-dir, where we replace the
negative examples of LEDS-core by positive pairs in
reverse order, thus focusing on entailment direction.

We derive two more benchmarks from BLESS
(Baroni and Lenci, 2011). BLESS lists pairs of con-
cepts linked by one of 5 possible relations: coordi-
nates, hypernymy, meronymy, attributes and events.
We employed this resource to construct BLESS-
coord, which –unlike LEDS, where entailing pairs
have to be distinguished from pairs of words that,
mostly, bear no relation– is composed of 1,236
super-subordinate pairs (which we treat as positive
examples) to be distinguished from 3,526 coordinate
pairs. BLESS-mero has the same positive exam-
ples, but 2,943 holo-meronyms pairs as negatives.
Examples of all lexical benchmarks are given in Ta-
ble 1.

Sentence entailment To evaluate the models on
recognizing entailment between sentences, we use
a benchmark derived from SICK (Marelli et al.,
2014b). The original data set contains pairs of sen-
tences in entailment, contradiction and neutral re-
lations. We focus on recognizing entailment, treat-
ing both contradictory and neutral pairs as nega-
tive examples (as in the classic RTE shared tasks
up to 2008).7 Data are divided into a development
set (SICK-dev) with 500 sentence pairs (144 posi-
tive, 356 negative), a training set (SICK-train) with
4,500 pairs (1,299 positive, 3,201 negative) and a
test set (SICK-test) with 4,927 pairs (1,414 positive,
3,513 negative). Examples from SICK are given in

7This prevents a direct comparison with the results of the
SICK shared task at SemEval (Marelli et al., 2014a). However,
all competitive SemEval systems were highly engineered for
the task, and made extensive use of a variety of pre-processing
tools, features and external resources (cf. Table 8 of Marelli et
al. (2014a)), so that a fair comparison with our simpler methods
would not be possible in any case.

Positive Negative

A man is slowly trekking
in the woods ! The man
is hiking in the woods

A group of scouts are
camping in the grass 9
A group of scouts are
hiking through the grass

Table 2: SICK sentence entailment examples.

Table 2.

4.4 Training regime

We tune once and for all the hyperparameters of the
models by maximizing accuracy on the small LEDS-
dev set. For SVM, we tune the kernel type, pick-
ing a 2nd degree polynomial kernel for the count
and TypeDM spaces, and a linear one for the pre-
dict space (alternatives: RBF and 1st, 2nd or 3rd de-
gree polynomials). The choice for the count space
is consistent with Turney and Mohammad (2014).
For BDSM, we tune H (dimensionality of Boolean
vectors), setting it to 100 for count, 1,000 for pre-
dict and 500 for TypeDM (alternatives: 10, 100,
500, 1,000 and 1,500) and the sparsity parameter
⇢, picking 0.5 for count, 0.75 for predict, and 0.25
for TypeDM (alternatives: 0.01, 0.05, 0.1, 0.25, 0.5,
0.75). For BDSM and the asymmetric similarity
measures, we also tune the e threshold above which
a pair is treated as entailing for each dataset.

The � (RBF kernel radius) and C (margin slack-
ness) parameters of SVM and the �, � and t param-
eters of BDSM (see Section 3) are set by maximiz-
ing accuracy on LEDS-dev for all lexical entailment
experiments. For sentence entailment, we tune the
same parameters on SICK-dev. In this case, given
the imbalance between positive and negative pairs,
we maximize weighted accuracy (that is, we count
each true negative as (|pos| + |neg|)/2|neg|, and
each true positive as (|pos| + |neg|)/2|pos|, where
|class| is the cardinality of the relevant class in the
tuning data).

Finally, for lexical entailment, we train the SVM
and BDSM weights by maximizing accuracy on
LEDS-core. For LEDS-core and LEDS-dir evalu-
ation, we use 10-fold validation. When evaluating
on the BLESS benchmarks, we train on full LEDS-
core, excluding any pairs also present in BLESS.
For sentential entailment, the models are trained by

381



•  提案手法はSVMに
勝ったり負けたり 
•  難しい 
BLESS-mero 
では大差で勝利 

•  元ベクトルから 
スコア算出系は弱い 

単語ペア　結果 
model LEDS BLESS

core dir coord mero

count

clarkeDE 77 63 27 36

weedsPrec 79 75 27 33

cosWeeds 79 63 26 35

invCL 77 63 27 36

balAPinc 79 66 26 36

SVM (count) 84 90 55 57

BDSM (count) 83 87 53 55

predict

SVM (predict) 71 85 70 55

BDSM (predict) 80 79 76 68

TypeDM

SVM (TypeDM) 78 83 56 60

BDSM (TypeDM) 83 71 31 59

Table 3: Percentage accuracy (LEDS) and F1
(BLESS) on the lexical entailment benchmarks.

maximizing weighted accuracy on SICK-train.

5 Lexical entailment

Table 3 reports lexical entailment results (percent-
age accuracies for the LEDS benchmarks, F1 scores
for the unbalanced BLESS sets). We observe, first
of all, that SVM and BDSM are clearly outperform-
ing the asymmetric similarity measures in all tasks.
In only one case the lowest performance attained
by a supervised model drops below the level of
the best asymmetric measure performance (BDSM
using TypeDM on LEDS-dir).8 The performance
of the unsupervised measures, which rely most di-
rectly on the original distributional space, confirms
that the latter is more suited to capture similar-
ity than entailment. This is shown by the drop in
performance from LEDS-core (where many nega-
tive examples are semantically unrelated) to LEDS-
dir (where items in positive and negative pairs are
equally similar), as well as by the increase from
BLESS-coord to BLESS-mero (as coordinate neg-

8We also inspected ROC curves for BDSM (count) and the
asymmetric measures, to check that the better performance of
BDSM was not due to a brittle e (entailment threshold). The
curves confirmed that, for all tasks, BDSM is clearly dominat-
ing all asymmetric measures across the whole e range.

ative examples are more tightly related than holo-
meronym pairs).

In the count input space, SVM and BDSM per-
form similarly across all 4 tasks, with SVM having
a small edge. In the next sections, we will thus focus
on count vectors, for the fairest comparison between
the two models. BDSM reaches the most consistent
results with predict vectors, where it performs par-
ticularly well on BLESS, and not dramatically worse
than with count vectors on LEDS. On the other hand,
predict vectors have a negative overall impact on
SVM in 3 over 4 tasks. Concerning the interac-
tion of input representations and tasks, we observe
that count vectors work best with LEDS, whereas
for BLESS predict vectors are the best choice, re-
gardless of the supervised method employed.

Confirming the results of Baroni et al. (2014b),
the TypeDM vectors are not a particularly good
choice for either model. BDSM is specifically
negatively affected by this choice in the LEDS-dir
and BLESS-coord tasks. The tight taxonomic in-
formation captured by a dependency-based model
such as TypeDM might actually be detrimental in
tasks that require distinguishing between closely re-
lated forms, such as coordinates and hypernyms in
BLESS-coord.

In terms of relative performance of the super-
vised entailment models, if one was to weigh each
task equally, the best average performance would
be reached by BDSM trained on predict vectors,
with an average score of 75.75, followed by SVM
on count vectors, with an average score of 71.5.
We assess the significance of the difference be-
tween supervised models trained on the input vec-
tors that give the best performance for each task by
means paired t-tests on LEDS and McNemar tests
on BLESS. SVM with count vectors is better than
BDSM on LEDS-core (not significant) and LEDS-
dir (p<0.05). On the other hand, BDSM with pre-
dict vectors is better than SVM on BLESS-coord
(p<0.001) and BLESS-mero (p<0.001). We con-
clude that, overall, the two models perform similarly
on lexical entailment tasks.

5.1 Learning efficiency
We just observed that SVM and BDSM have similar
lexical entailment performance, especially in count
space. However, the two models are radically differ-
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BDSMは少量のデータでも学習効果が高い 
1638→364 (2/9) にしても性能は 83%→約79% 

単語ペア　結果 

383



データ: SICK (Marelli et al., 2014), 訓練:4500, テスト:4927 
文の構成法 

1. 全単語ベクトル総和 
2. Practical lexical 
    function model 
    (Paperno et al., 2014) 

比較手法 
1. 全部含意 
2. 全部非含意 
3. 単語の重なり数でスコア 
4. BDSM (提案手法) 
5. SVM 

文含意　実験設定 

Positive Negative

LEDS elephant ! animal ape 9 book

LEDS-dir animal 9 elephant

BLESS-coord elephant ! herbivore elephant 9 hippo

BLESS-mero elephant 9 trunk

Table 1: Lexical entailment examples.

very strong baseline here. We thus explore a more
challenging setup, LEDS-dir, where we replace the
negative examples of LEDS-core by positive pairs in
reverse order, thus focusing on entailment direction.

We derive two more benchmarks from BLESS
(Baroni and Lenci, 2011). BLESS lists pairs of con-
cepts linked by one of 5 possible relations: coordi-
nates, hypernymy, meronymy, attributes and events.
We employed this resource to construct BLESS-
coord, which –unlike LEDS, where entailing pairs
have to be distinguished from pairs of words that,
mostly, bear no relation– is composed of 1,236
super-subordinate pairs (which we treat as positive
examples) to be distinguished from 3,526 coordinate
pairs. BLESS-mero has the same positive exam-
ples, but 2,943 holo-meronyms pairs as negatives.
Examples of all lexical benchmarks are given in Ta-
ble 1.

Sentence entailment To evaluate the models on
recognizing entailment between sentences, we use
a benchmark derived from SICK (Marelli et al.,
2014b). The original data set contains pairs of sen-
tences in entailment, contradiction and neutral re-
lations. We focus on recognizing entailment, treat-
ing both contradictory and neutral pairs as nega-
tive examples (as in the classic RTE shared tasks
up to 2008).7 Data are divided into a development
set (SICK-dev) with 500 sentence pairs (144 posi-
tive, 356 negative), a training set (SICK-train) with
4,500 pairs (1,299 positive, 3,201 negative) and a
test set (SICK-test) with 4,927 pairs (1,414 positive,
3,513 negative). Examples from SICK are given in

7This prevents a direct comparison with the results of the
SICK shared task at SemEval (Marelli et al., 2014a). However,
all competitive SemEval systems were highly engineered for
the task, and made extensive use of a variety of pre-processing
tools, features and external resources (cf. Table 8 of Marelli et
al. (2014a)), so that a fair comparison with our simpler methods
would not be possible in any case.

Positive Negative

A man is slowly trekking
in the woods ! The man
is hiking in the woods

A group of scouts are
camping in the grass 9
A group of scouts are
hiking through the grass

Table 2: SICK sentence entailment examples.

Table 2.

4.4 Training regime

We tune once and for all the hyperparameters of the
models by maximizing accuracy on the small LEDS-
dev set. For SVM, we tune the kernel type, pick-
ing a 2nd degree polynomial kernel for the count
and TypeDM spaces, and a linear one for the pre-
dict space (alternatives: RBF and 1st, 2nd or 3rd de-
gree polynomials). The choice for the count space
is consistent with Turney and Mohammad (2014).
For BDSM, we tune H (dimensionality of Boolean
vectors), setting it to 100 for count, 1,000 for pre-
dict and 500 for TypeDM (alternatives: 10, 100,
500, 1,000 and 1,500) and the sparsity parameter
⇢, picking 0.5 for count, 0.75 for predict, and 0.25
for TypeDM (alternatives: 0.01, 0.05, 0.1, 0.25, 0.5,
0.75). For BDSM and the asymmetric similarity
measures, we also tune the e threshold above which
a pair is treated as entailing for each dataset.

The � (RBF kernel radius) and C (margin slack-
ness) parameters of SVM and the �, � and t param-
eters of BDSM (see Section 3) are set by maximiz-
ing accuracy on LEDS-dev for all lexical entailment
experiments. For sentence entailment, we tune the
same parameters on SICK-dev. In this case, given
the imbalance between positive and negative pairs,
we maximize weighted accuracy (that is, we count
each true negative as (|pos| + |neg|)/2|neg|, and
each true positive as (|pos| + |neg|)/2|pos|, where
|class| is the cardinality of the relevant class in the
tuning data).

Finally, for lexical entailment, we train the SVM
and BDSM weights by maximizing accuracy on
LEDS-core. For LEDS-core and LEDS-dir evalu-
ation, we use 10-fold validation. When evaluating
on the BLESS benchmarks, we train on full LEDS-
core, excluding any pairs also present in BLESS.
For sentential entailment, the models are trained by
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Figure 1: Function application: If two syntactic
sisters have different arity, treat the higher-arity
sister as the functor. Compose by multiplying the
last matrix in the functor tuple by the argument
vector and summing the result to the functor vec-
tor. Unsaturated matrices are carried up to the
composed node, summing across sisters if needed.

dogs ~

dogs

run ~run,

2
run

dogs run ~run+
2

run⇥ ~

dog

house ~

house

big ~

big,

2

big

big house ~

big +
2

big ⇥ ~

house

Table 2: Examples of function application.

as give in a ditransitive construction, the first step
in the derivation absorbs the innermost argument
by multiplying its vector by the third give matrix,
and then composition proceeds like for transitives.

The second composition rule, symmetric com-
position applies when two syntactic sisters are of
the same arity (e.g., two vectors, or two vector-
matrix pairs). Symmetric composition simply
sums the objects in the two tuples: vector with
vector, n-th matrix with n-th matrix.

Symmetric composition is reserved for struc-
tures in which the function-argument distinction
is problematic. Some candidates for such treat-
ment are coordination and nominal compounds,
although we recognize that the headless analysis is

2
s

chase⇥ ~

dogs+ ~

chase+
2

o

chase⇥ ~

cats

~

dogs

⌧
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Figure 2: Applying function application twice to
derive the representation of a transitive sentence.

sing: ~

sing,

2

sing dance: ~

dance,

2

dance

sing and dance: ~

sing + ~

dance,

2

sing +
2

dance

rice: ~

rice cake: ~

cake

rice cake ~

rice+ ~

cake

Table 3: Examples of symmetric composition.

not the only possible one here. See two examples
of Symmetric Composition application in Table 3.

Note that the sing and dance composition in Ta-
ble 3 skips the conjunction. Our current plf im-
plementation treats most grammatical words, in-
cluding conjunctions, as “empty” elements, that
do not project into semantics. This choice leads
to some interesting “serendipitous” treatments of
various constructions. For example, since the cop-
ula is empty, a sentence with a predicative adjec-
tive (cars are red) is treated in the same way as a
phrase with the same adjective in attributive posi-
tion (red cars) – although the latter, being a phrase
and not a full sentence, will later be embedded as
argument in a larger construction. Similarly, leav-
ing the relative pronoun empty makes cars that
run identical to cars run, although, again, the for-
mer will be embedded in a larger construction later
in the derivation.

We conclude our brief exposition of plf with an
alternative intuition for it: the plf model is also
a more sophisticated version of the additive ap-
proach, where argument words are adapted by ma-
trices that encode the relation to their functors be-
fore the sentence vector is derived by summing.

2.3 Satisfying the desiderata

Let us now outline how plf addresses the short-
comings of lf listed in Section 1.2. First, all is-
sues caused by representation size disappear. An
n-ary predicate is no longer encoded as an n+1-
way tensor; instead we have a sequence of n ma-
trices. The representation size grows linearly, not
exponentially, for higher semantic types, allowing
for simpler and more efficient parameter estima-
tion, storage, and computation.

As a consequence of our architecture, we no
longer need to perform the complicated step-by-
step estimation for elements of higher arity. In-
deed, one can estimate each matrix of a com-
plex representation individually using the simple
method of Baroni and Zamparelli (2010). For in-
stance, for transitive verbs we estimate the verb-
subject combination matrix from subject and verb-

(Paperno et al., 2014)より引用 



•  BDSMはSVMに勝利 

•  単なる総和で文構成
した方が良い結果 
（語順考慮なし） 

•  単語重なり数 (WO) 
でも結構匹敵する 
性能になっていて 
なんだかなあ 

文含意　結果 

model P R F1 A
Sycophantic 29 100 45 29

Majority 0 0 0 71
WO 40 86 55 60

SVM (add) 47 54 51 70

BDSM (add) 48 74 58 69

SVM (plf) 39 45 42 64

BDSM (plf) 44 71 55 66

SVM(add) + WO 44 82 58 65

BDSM(add) + WO 48 80 60 69

SVM(plf) + WO 42 76 54 63

BDSM(plf) + WO 42 77 54 63

Table 4: SICK results (percentages).

nations improve performance for both models and
BDSM+WO attains the best overall F1 score, being
statistically superior to both SVM+WO (p<0.001)
and WO alone (p < 0.001) (statistical significance
values obtained through McNemar tests).

We repeated the training data reduction experi-
ment from Section 5.1 by measuring cross-validated
F1 scores for SICK (with additive composition). We
confirmed that BDSM is robust to decreasing the
amount of training data, maintaining an F1 score of
56 with only 942 training items, whereas, with the
same amount of training data, SVM drops to a F1 of
42.

7 Understanding Boolean vectors

BDSM produces representations that are meant to
respect inclusion and be interpretable. We turn now
to an extended analysis of the learned representa-
tions (focusing on those derived from count vectors),
showing first how BDSM activation correlates with
generality and abstractness, and then how similarity
in BDSM space points in the direction of an exten-
sional interpretation of Boolean units.

7.1 Boolean dimensions and generality
The BDSM layer is trained to assign more activa-
tion to a hypernym than its hyponyms (the hyper-
nym units should include the hyponyms’ ones), so
the more general (that is, higher on the hypernymy
scale) a concept is, the higher the proportion of acti-
vated units in its BDSM vector. The words that acti-
vate all nodes should be implied by all other terms.
Indeed, very general words such as thing(s), every-
thing, and anything have Boolean vectors with all 1s.

But there are also other words (a total of 768) map-
ping to the top element of the Boolean algebra (a
vector of all 1s), including reduction, excluded, re-
sults, benefit, global, extent, achieve. The collapsing
of these latter terms must be due to a combination of
two factors: low dimensionality of Boolean space,10

and the fact that the model was trained on a limited
vocabulary, mostly consisting of concrete nouns, so
there was simply no training evidence to character-
ize abstract words such as benefit in a more nuanced
way.

Still, we predict that the proportion of Boolean di-
mensions that a word activates (i.e., dimensions with
value 1) should correspond, as a trend, to its degree
of semantic generality. More general concepts also
tend to be more abstract, so we also expect a cor-
relation between Boolean activation and the word
rating on the concrete-abstract scale.11 To evalu-
ate these claims quantitatively, we rely on WordNet
(Fellbaum, 1998), which provides an is-a hierar-
chy of word senses (‘synsets’) that can be used to
measure semantic generality. We compute the aver-
age length of a path from the root of the hierarchy
to the WordNet synsets of a word (shortest is most
general, so that a higher depth score corresponds to
a more specific concept). We further use the Ghent
database (Brysbaert et al., 2013), that contains 40K
English words rated on a 1-5 scale from least to most
concrete (as expected, depth and concreteness are
correlated, ⇢ = .54).

Boolean vector activation significantly correlates
with both variables (⇢=-18 with depth, ⇢=-30 with
concreteness; these and all correlations below sig-
nificant at p < 0.005). Moreover, the BDSM acti-
vations are much higher than those achieved by dis-
tributional vector L1 norm (which, surprisingly, has
positive correlations: ⇢=13 with depth, ⇢=21 with
concreteness) and word frequency (⇢=-2 with depth,
⇢=4 with concreteness).

We visualize how Boolean activation correlates
with generality in Figure 4. We plot the two
example words car and newspaper together with
their 30 nearest nominal neighbours in distributional

10With count input representations, our tuning favoured rela-
tively dense 100-dimensional vectors (see Section 4.4).

11Automatically determining the degree of abstractness of
concepts is a lively topic of research (Kiela et al., 2014; Tur-
ney et al., 2011).
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•  活性化率 (1値の次元の率) 
•  word2vec上での 
car, newspaperの 
隣接30単語 

•  media, press, volvoなど 
はそれ自体は教師なし 

•  活性化率は抽象度と相関あり 
•  WordNetでの深さ 

•  抽象度辞書  
(Brysbaert et al., 2013) 

議論・考察 
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•  thing, anythingなどは全次元1になったが、benefit, 
achieveなど怪しい単語も全次元1だった (計768語) 
•  そもそも次元数少ないから表現力が厳しい 
•  そもそも訓練データが具体名詞ばかり 

•  外延的な解釈が “そこそこ” 可能 
•  類似度が表示対象の集合の重なりの量に対応 
元のベクトルに比べて 
•  co-hyponym は類似度が低くなる 
•  人名同士 は類似度が低くなる 
•  synonym は類似度が高くなる 

•  hypo/hypernym まで類似度が低くなってしまった 

議論・考察 



•  分布意味論由来のベクトルを 
外延的な意味成分の二値ベクトルへと 
変換するニューラルネットの学習法を提案した 
•  意味の含意関係認識において 
より少ない教師データで効率的に学習可能 

•  単なる類似度では解けない精密な識別能力が 
求められるタスクでSVMを上回った 

まとめ 



•  コンセプトとモデルがシンプルに直結していて納得感 
•  BIスコアはちょっと直感的でない 

•  定量評価の実験には多少のもやもや 
•  勝ったり負けたり の割にその原因究明は薄かった 

•  定性的な観察の結果はなかなか興味深い 
•  各次元個別での解釈は可能かも知りたかった 

•  WordNetまるごとなどでしっかり学習したら 
エンコード性能はかなり高まるのだろうか 

おまけ　個人的感想 


