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Distributed Sentence Representations

the person is jumping > o

a person who is snowboarding

jumps into the air
jump — .,

the snowboarder is leaping over snow ——» @

Rd

» Like word vectors, represent sentences as real-valued vectors
» What for?

— Sentence classification

Semantic relatedness / paraphrase

Machine translation

Information retrieval



Our Work

» A new model for sentence representations: Tree-LSTMs
> Generalizes the widely-used chain-structured LSTM

» New state-of-the-art empirical results:
— Sentiment classification (Stanford Sentiment Treebank)

— Semantic relatedness (SICK dataset)
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Compositional Representations

v(tall)

> v(tall tree)

v(tree)

Idea: Compose phrase and sentence reps from their constituents
Use a composition function ¢

Steps:
1. Choose some compositional order for a sentence
> e.g. sequentially left-to-right

2. Recursively apply ¢ until representation for entire sentence is
obtained

We want to learn ¢ from data



Sequential Composition

the cat climbs the tall tree

>

State is composed left-to-right

v

Input at each time step is a word vector

» Rightmost output is the representation of the entire sentence

v

Common parameterization: recurrent neural network (RNN)



Sequential Composition:
Long Short-Term Memory (LSTM) Networks

output vector output vector
output gate H% IH output gate
I —
J T A
input gate —p-H H<¢—— input gate
‘ forget gate ‘
input vector input vector
step ¢ stept+1

» A particular parameterization of the composition function ¢

> Recent popularity: strong empirical results on sequence-based tasks
— e.g. language modeling, neural machine translation



Sequential Composition:
Long Short-Term Memory (LSTM) Networks

output vector output vector

output gate HI %H output gate

|

1 T 1

input gate —p| 4—— input gate
T forget gate T

input vector input vector

step ¢ stept+1

» Memory cell: a vector representing the inputs seen so far

» Intuition: state can be preserved over many time steps



Sequential Composition:
Long Short-Term Memory (LSTM) Networks

output vector

output gate HI

I

A

r B

input gate —p-H

input vector

step ¢

T

forget gate

output vector

IH output gate

A

B<¢— input gate

input vector

stept+1

» Input/output/forget gates: vectors in [0, 1]¢

» Multiplied elementwise ( “soft masking”)

> Intuition: Selective memory read/write, selective information

propagation
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Sequential Composition:
(Simplified) step-by-step LSTM composition

output vector output vector
output gate H% IH output gate
I — -
y T A
input gate —p-H B<¢— input gate
‘ forget gate ‘
input vector input vector
step t stept+1
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Sequential Composition:
(Simplified) step-by-step LSTM composition

output vector output vector
output gate H% IH output gate
I -
y T A
input gate —p-H B<¢— input gate
‘ forget gate ‘
input vector input vector
step t stept+1

1. Starting with state at ¢
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Sequential Composition:
(Simplified) step-by-step LSTM composition

output vector output vector

output gate HI IH output gate
| 11|
I -

A

input gate —p-H T B<¢— input gate
‘ forget gate ‘

input vector input vector

step t stept+1

1. Starting with state at ¢

2. Predict gates from input and state at ¢
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Sequential Composition:
(Simplified) step-by-step LSTM composition

output vector output vector

output gate HI IH output gate

[ 4.7 > e
T T A
input gate —p-H B<¢— input gate
‘ forget gate ‘
input vector input vector
step t stept+1

1. Starting with state at ¢
2. Predict gates from input and state at ¢

3. Mask memory cell with forget gate
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Sequential Composition:
(Simplified) step-by-step LSTM composition

output vector output vector

output gate HI IH output gate
| 11|
S

A

input gate —p-H T B<¢— input gate
‘ forget gate ‘

input vector input vector

step t stept+1

. Starting with state at ¢
. Predict gates from input and state at ¢
. Mask memory cell with forget gate

. Add update computed from input and state at ¢



Long Short-Term Memory (LSTM)
NI Ny

Input Gate [ , Output Gate (

Alex Graves. (2013) Generating Sequences with Recurrent Neural Networks. arXiv.org

Input gate: i, = o(W&)x, + WROR _ + W, + b))
Forget gate: f, = (W& x, + WhDh,_y + W,y + by)
Cell: ¢, = f; @ g +i; © tanh(W &y, + WHIR ) + b))
Output gate: o, = a(W&)x, + WEIh_; + W(c, +b,)
Hidden variable: h; = o, © tanh(c;)




Tree-Structured Composition

s

climbs tall tree

> In this work: compose following the syntactic structure of sentences
— Dependency parse

— Constituency parse

» Previous work: recursive neural networks
(Goller and Kuchler, 1996; Socher et al., 2011)
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Generalizing the LSTM

output vector output vector
output gate H% IH output gate
v — I I 4.74 I IFH e
i 4 T A
input gate —p-H H<¢—— input gate
‘ forget gate ‘
input vector input vector
step ¢ stept+1

» Standard LSTM: each node has one child

» We want to generalize this to accept multiple children



Tree-Structured LSTMs

A

forget

i

gate
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B<¢— input gate

input

» Natural generalization of the sequential LSTM composition function

» Allows for trees with arbitrary branching factor

» Standard chain-structured LSTM is a special case
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Tree-Structured LSTMs

A

forget output

H

gate

A

\i IH output gate
SIIH—

A

ST

3

/F TH input gate

forget

input

gate

> Key feature: A separate forget gate for each child

> Selectively preserve information from each child
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Tree-Structured LSTMs

A forget output
LAl gate
Al y
L \- ¢—— output gate

xmi[[ﬂ >
,

~wgL L

/

forget input
gate

» Selectively preserve information from each child

» How can this be useful?
— lIgnoring unimportant clauses in sentence

— Emphasizing sentiment-rich children for sentiment classification



Empirical Evaluation

Relatedness Sentiment

LSTM Variant  d 6| d |0
Senti lassificati Standard 150 203400 168 315.840
> Sentiment classification Bidirectional 150 203,400 168 315840
) 2dayer 108 203472 120 318720
— Stanford Sentiment Treebank  Bidirectional 2-layer 108 203472 120 318.720
Constituency Tree 142 205,190 150 316,800
Dependency Tree 150 203,400 168 315840

» Semantic relatedness

— SICK dataset, SemEval 2014 Task 1

d: BrUgmixic

Common Crawld—/ X (CHBTGlove THFE LIZ300KTTDEEENRYT ML
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Evaluation 1: Sentiment Classification

,////6\‘ —
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s justincredibly dull

Task: Predict the sentiment of movie review sentences
— Binary subtask: positive / negative
— b5-class subtask: strongly positive / positive / / negative /
strongly negative

Dataset: Stanford Sentiment Treebank (Socher et al., 2013)

Supervision: head-binarized constituency parse trees with sentiment
labels at each node

Model: Tree-LSTM on given parse trees, softmax classifier at each
node
25



v

v

v

v

Evaluation 2: Semantic Relatedness

“a person who is practicing
snowboarding jumps into the
air”

“the snowboarder is leaping
over white snow”

Task: Predict the semantic relatedness of sentence pairs
Dataset: SICK from SemEval 2014, Task 1 (Marelli et al., 2014)
Supervision: human-annotated relatedness scores y € [1, 5]
Model:

— Sentence representation with Tree-LSTM on dependency parses

— Similarity predicted by NN regressor given representations at root
nodes
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We first produce sentence representations fy,
and hp for each sentence in the pair using a
Tree-LSTM model over each sentence’s parse tree.
Given these sentence representations, we predict
the similarity score ¢ using a neural network that
considers both the distance and angle between the
pair (hr, hg):

hy = hp ® hg, (15)
hy = |h — hpgl,

he=o (W(X)}zx FWh, ¢ b(h)> .

Py = softmax (Hﬂ'(p) hs + b(’))) R
7 =1"po,

where #7 = [1 2 ... K] and the absolute value
function is applied elementwise. The use of both
distance measures h, and hy is empirically mo-
tivated: we find that the combination outperforms
the use of either measure alone. The multiplicative
measure i, can be interpreted as an elementwise

comparison of the signs of the input representa-
tions.

We want the expected rating under the predicted
distribution pp given model parameters 6 to be
close to the gold rating y € [1, K]: § = g ~ .
We therefore define a sparse target distribution' p
that satisfies y = 7 p:

vy -yl i=lyl+1
pi=qlvl-y+1, i=|y|
0 otherwise

for 1 < i < K. The cost function is the regular-
ized KL-divergence between p and pg:

m

70 = S ) + Slol,

where m is the number of training pairs and the
superscript & indicates the Ath sentence pair.



Sentiment Classification Results

Method Fine-grained  Binary
RAE (Socher et al., 2013) 43.2 82.4
MV-RNN (Socher et al.. 2013) 44.4 82.9
RNTN (Socher et al., 2013) 45.7 854
DCNN (Blunsom et al., 2014) 48.5 86.8
Paragraph-Vec (Le and Mikolov, 2014) 48.7 87.8
CNN-non-static (Kim, 2014) 48.0 87.2
CNN-multichannel (Kim, 2014) 47.4 88.1
DRNN (Irsoy and Cardie, 2014) 49.8 86.6
LSTM 46.4 (1.1) 84.9 (0.6)
Bidirectional LSTM 49.1 (1.0) 87.5 (0.5)
2-layer LSTM 46.0 (1.3) 86.3 (0.6)
2-layer Bidirectional LSTM 48.5 (1.0) 87.2 (1.0)
Dependency Tree-LSTM 48.4 (0.4) 85.7 (0.4)
Constituency Tree-LSTM

— randomly initialized vectors 43.9 (0.6) 82.0 (0.5)

— Glove vectors, fixed 49.7 (0.4) 87.5 (0.8)

— Glove vectors, tuned 51.0 (0.5) 88.0 (0.3)
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Bidirectional LSTM

Outputs R | Yt Yet1 - - -

Backward Layer @
Forward Layer @

Inputs cee T Tt Tyiq -

T
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SAANAN

Fig. 2. Bidirectional Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

A. Graves, N. Jaitly, A. Mohamed. Hybrid Speech Recognition with Deep
Bidirectional LSTM. ASRU 2013.



Semantic Relatedness Results

Method Pearson’s r Spearman’s p MSE
Illinois-LH (Lai and Hockenmaier, 2014) 0.7993 0.7538 0.3692
UNAL-NLP (Jimenez et al., 2014) 0.8070 0.7489 0.3550
Meaning Factory (Bjerva et al., 2014) 0.8268 0.7721 0.3224
ECNU (Zhao et al., 2014) 0.8414 - -

Mean vectors 0.7577 (0.0013) 0.6738 (0.0027) 0.4557 (0.0090)
DT-RNN (Socher et al., 2014) 0.7923 (0.0070) 0.7319 (0.0071) 0.3822 (0.0137)
SDT-RNN (Socher et al., 2014) 0.7900 (0.0042) 0.7304 (0.0076) 0.3848 (0.0074)
LSTM 0.8528 (0.0031) 0.7911 (0.0059) 0.2831 (0.0092)
Bidirectional LSTM 0.8567 (0.0028) 0.7966 (0.0053) 0.2736 (0.0063)
2-layer LSTM 0.8515 (0.0066) 0.7896 (0.0088) 0.2838 (0.0150)
2-layer Bidirectional LSTM 0.8558 (0.0014) 0.7965 (0.0018) 0.2762 (0.0020)
Constituency Tree-LSTM 0.8582 (0.0038) 0.7966 (0.0053) 0.2734 (0.0108)
Dependency Tree-LSTM 0.8676 (0.0030) 0.8083 (0.0042) 0.2532 (0.0052)
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Qualitative Analysis
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LSTMs vs. Tree-LSTMs:
How does structure help?

It 's actually pretty good in the first few minutes , but
the longer the movie goes , the worse it gets .

LSTM Tree-LSTM Gold

What happens when the clauses are inverted?

30



LSTMs vs. Tree-LSTMs:
How does structure help?

The longer the movie goes , the worse it gets , but
it 's actually pretty good in the first few minutes .

LSTM Tree-LSTM Gold
+ —_ —

LSTM prediction switches, but Tree-LSTM prediction does not!

Either LSTM belief state is overwritten by last seen sentiment-rich word,
or just always inverts the sentiment at “but”.

31



LSTM vs. Tree-LSTM:
Hard Cases in Sentiment

If Steven Soderbergh’s ‘Solaris’ is a failure it is a glorious failure.

LSTM Tree-LSTM Gold
- = - = ++
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Forget Gates: Selective State Preservation

DI |
I

UIERTITIN eV

waste of good performances

» Striped rectangles = forget gate activations

» More white = more of that child’s state is preserved
33



Forget Gates: Selective State Preservation

DI |
I

UIERTITIN eV

waste of good performances

» States of sentiment-rich children are emphasized

won

— e.g. “a" vs. “waste”

> “a waste” emphasized over “of good performances” 34



Conclusion

» We introduce Tree-LSTMs for composing distributed representations
of sentences

» Tree-LSTMs outperform previous methods on sentiment, semantic
similarity

» By making use of structural information, we can do better than
standard sequential LSTMs
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Thanks

t-SNE visualization of Tree-LSTM phrase and sentence representations
S f S
on the Stanford Sentiment Treebank)

Code
github.com/stanfordnlp/treelstm
Contact
Kai Sheng Tai kst@metamind.io
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