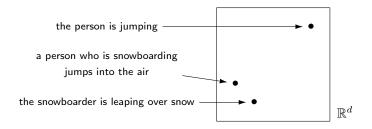
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks

Kai Sheng Tai^{†‡}, Richard Socher[‡], and Christopher D. Manning[†] [†]Stanford University, [‡]MetaMind

July 29, 2015

読み手: 岡崎直観 (東北大学)

Distributed Sentence Representations



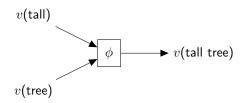
Like word vectors, represent sentences as real-valued vectors

- What for?
 - Sentence classification
 - Semantic relatedness / paraphrase
 - Machine translation
 - Information retrieval

Our Work

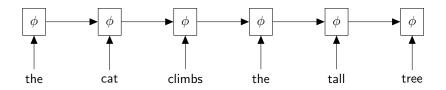
- ► A new model for sentence representations: Tree-LSTMs
- Generalizes the widely-used chain-structured LSTM
- ▶ New state-of-the-art empirical results:
 - Sentiment classification (Stanford Sentiment Treebank)
 - Semantic relatedness (SICK dataset)

Compositional Representations



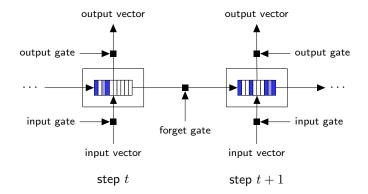
- ► Idea: Compose phrase and sentence reps from their constituents
- \blacktriangleright Use a composition function ϕ
- Steps:
 - 1. Choose some compositional order for a sentence
 - e.g. sequentially left-to-right
 - 2. Recursively apply ϕ until representation for entire sentence is obtained
- We want to learn ϕ from data

Sequential Composition



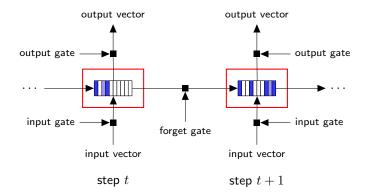
- State is composed left-to-right
- Input at each time step is a word vector
- Rightmost output is the representation of the entire sentence
- Common parameterization: recurrent neural network (RNN)

Sequential Composition: Long Short-Term Memory (LSTM) Networks



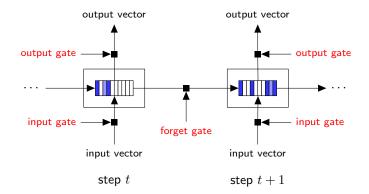
- \blacktriangleright A particular parameterization of the composition function ϕ
- Recent popularity: strong empirical results on sequence-based tasks
 e.g. language modeling, neural machine translation

Sequential Composition: Long Short-Term Memory (LSTM) Networks

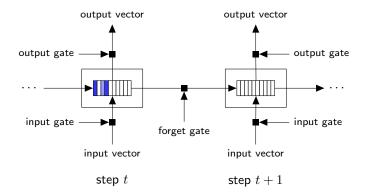


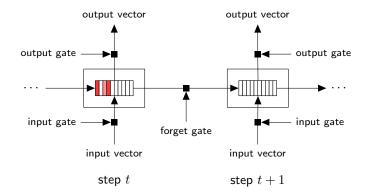
- Memory cell: a vector representing the inputs seen so far
- ▶ Intuition: state can be preserved over many time steps

Sequential Composition: Long Short-Term Memory (LSTM) Networks

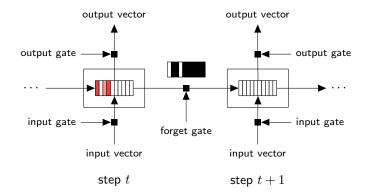


- ▶ Input/output/forget gates: vectors in [0,1]^d
- Multiplied elementwise ("soft masking")
- Intuition: Selective memory read/write, selective information propagation

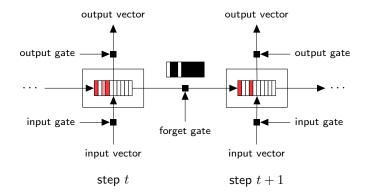




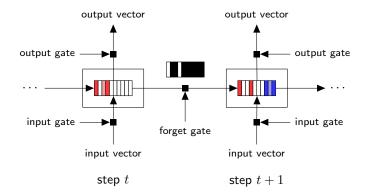
1. Starting with state at t



- 1. Starting with state at t
- 2. Predict gates from input and state at t

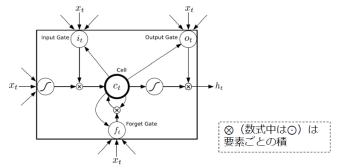


- 1. Starting with state at t
- 2. Predict gates from input and state at t
- 3. Mask memory cell with forget gate



- 1. Starting with state at t
- 2. Predict gates from input and state at t
- 3. Mask memory cell with forget gate
- 4. Add update computed from input and state at t

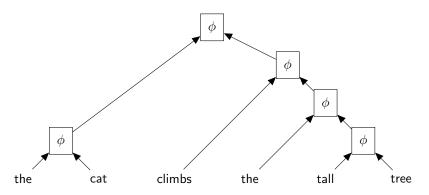
Long Short-Term Memory (LSTM)



Alex Graves. (2013) Generating Sequences with Recurrent Neural Networks. arXiv.org

Input gate: $i_t = \sigma (W^{(xi)}x_t + W^{(hi)}h_{t-1} + W^{(ci)}c_{t-1} + b_i)$ Forget gate: $f_t = \sigma (W^{(xf)}x_t + W^{(hf)}h_{t-1} + W^{(cf)}c_{t-1} + b_f)$ Cell: $c_t = f_t \odot c_{t-1} + i_t \odot \tanh(W^{(xc)}x_t + W^{(hc)}h_{t-1} + b_c)$ Output gate: $o_t = \sigma (W^{(xo)}x_t + W^{(ho)}h_{t-1} + W^{(co)}c_t + b_o)$ Hidden variable: $h_t = o_t \odot \tanh(c_t)$

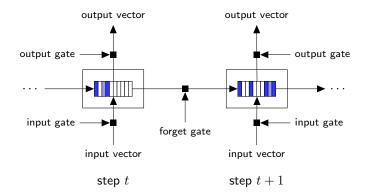
Tree-Structured Composition



▶ In this work: compose following the syntactic structure of sentences

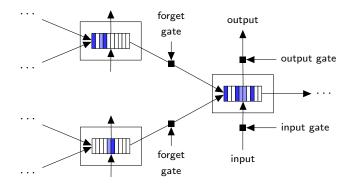
- Dependency parse
- Constituency parse
- Previous work: recursive neural networks (Goller and Kuchler, 1996; Socher et al., 2011)

Generalizing the LSTM



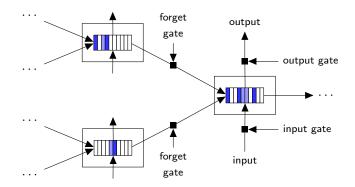
- Standard LSTM: each node has one child
- ▶ We want to generalize this to accept multiple children

Tree-Structured LSTMs



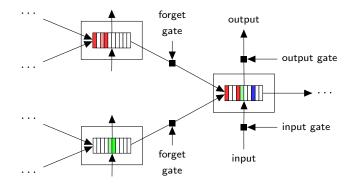
- ▶ Natural generalization of the sequential LSTM composition function
- Allows for trees with arbitrary branching factor
- Standard chain-structured LSTM is a special case

Tree-Structured LSTMs



- Key feature: A separate forget gate for each child
- Selectively preserve information from each child

Tree-Structured LSTMs



- Selectively preserve information from each child
- How can this be useful?
 - Ignoring unimportant clauses in sentence
 - Emphasizing sentiment-rich children for sentiment classification

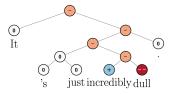
Empirical Evaluation

		Relatedness		Sentiment	
	LSTM Variant	d	$ \theta $	d	$ \theta $
 Sentiment classification 	Standard	150	203,400	168	315,840
	Bidirectional	150	203,400	168	315,840
– Stanford Sentiment Treebank	2-layer	108	203,472	120	318,720
	Bidirectional 2-layer	108	203,472	120	318,720
	Constituency Tree	142	205,190	150	316,800
Semantic relatedness	Dependency Tree	150	203,400	168	315,840
Semantic relatedness		d: 隠れ層の次元			;

- SICK dataset, SemEval 2014 Task 1

Common CrawlコーパスにおいてGloveで学習した300次元の単語ベクトル

Evaluation 1: Sentiment Classification



Task: Predict the sentiment of movie review sentences

- Binary subtask: positive / negative
- 5-class subtask: strongly positive / positive / neutral / negative / strongly negative
- Dataset: Stanford Sentiment Treebank (Socher et al., 2013)
- Supervision: head-binarized constituency parse trees with sentiment labels at each node
- Model: Tree-LSTM on given parse trees, softmax classifier at each node

Evaluation 2: Semantic Relatedness

"the snowboarder is leaping over white snow" ? "a person who is practicing snowboarding jumps into the air"

- **Task:** Predict the semantic relatedness of sentence pairs
- ▶ Dataset: SICK from SemEval 2014, Task 1 (Marelli et al., 2014)
- Supervision: human-annotated relatedness scores $y \in [1, 5]$
- Model:
 - Sentence representation with Tree-LSTM on dependency parses
 - Similarity predicted by NN regressor given representations at root nodes

We first produce sentence representations h_L and h_R for each sentence in the pair using a Tree-LSTM model over each sentence's parse tree. Given these sentence representations, we predict the similarity score \hat{y} using a neural network that considers both the distance and angle between the pair (h_L, h_R) :

$$\begin{aligned} h_{\times} &= h_{L} \odot h_{R}, \quad (15) \\ h_{+} &= |h_{L} - h_{R}|, \\ h_{s} &= \sigma \left(W^{(\times)} h_{\times} + W^{(+)} h_{+} + b^{(h)} \right), \\ \hat{p}_{\theta} &= \text{softmax} \left(W^{(p)} h_{s} + b^{(p)} \right), \\ \hat{y} &= r^{T} \hat{p}_{\theta}, \end{aligned}$$

where $r^T = [1 \ 2 \ \dots \ K]$ and the absolute value function is applied elementwise. The use of both distance measures h_{\times} and h_{+} is empirically motivated: we find that the combination outperforms the use of either measure alone. The multiplicative measure h_{\times} can be interpreted as an elementwise comparison of the signs of the input representations.

We want the expected rating under the predicted distribution \hat{p}_{θ} given model parameters θ to be close to the gold rating $y \in [1, K]$: $\hat{y} = r^T \hat{p}_{\theta} \approx y$. We therefore define a sparse target distribution¹ pthat satisfies $y = r^T p$:

$$p_i = \begin{cases} y - \lfloor y \rfloor, & i = \lfloor y \rfloor + 1\\ \lfloor y \rfloor - y + 1, & i = \lfloor y \rfloor\\ 0 & \text{otherwise} \end{cases}$$

1

for $1 \le i \le K$. The cost function is the regularized KL-divergence between p and \hat{p}_{θ} :

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{k=1}^{m} \mathrm{KL} \left(\boldsymbol{p}^{(k)} \parallel \boldsymbol{\hat{p}}_{\boldsymbol{\theta}}^{(k)} \right) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_{2}^{2},$$

where m is the number of training pairs and the superscript k indicates the kth sentence pair.

Sentiment Classification Results

Method	Fine-grained	Binary	_
RAE (Socher et al., 2013)	43.2	82.4	-
MV-RNN (Socher et al., 2013)	44.4	82.9	
RNTN (Socher et al., 2013)	45.7	85.4	
DCNN (Blunsom et al., 2014)	48.5	86.8	
Paragraph-Vec (Le and Mikolov, 2014)	48.7	87.8	
CNN-non-static (Kim, 2014)	48.0	87.2	
CNN-multichannel (Kim, 2014)	47.4	88.1	
DRNN (Irsoy and Cardie, 2014)	49.8	86.6	
LSTM	46.4 (1.1)	84.9 (0.6)	-
Bidirectional LSTM	49.1 (1.0)	87.5 (0.5)	←これで十分という説
2-layer LSTM	46.0 (1.3)	86.3 (0.6)	
2-layer Bidirectional LSTM	48.5 (1.0)	87.2 (1.0)	
Dependency Tree-LSTM	48.4 (0.4)	85.7 (0.4)	「ノードの数が少なくな
Constituency Tree-LSTM			るため、学習しづらい
 – randomly initialized vectors 	43.9 (0.6)	82.0 (0.5)	
- Glove vectors, fixed	49.7 (0.4)	87.5 (0.8)	
- Glove vectors, tuned	51.0 (0.5)	88.0 (0.3)	学習時に単語ベクトル
(茶老フラノドキー			も更新すると良い 27

(著者スライドを大幅に改変)

Bidirectional LSTM

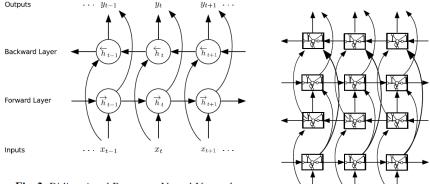


Fig. 2. Bidirectional Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Network (DBLSTM)

A. Graves, N. Jaitly, A. Mohamed. Hybrid Speech Recognition with Deep Bidirectional LSTM. ASRU 2013.

Semantic Relatedness Results

Method	Pearson's r	Spearman's ρ	MSE	
Illinois-LH (Lai and Hockenmaier, 2014)	0.7993	0.7538	0.3692	
UNAL-NLP (Jimenez et al., 2014)	0.8070	0.7489	0.3550	
Meaning Factory (Bjerva et al., 2014)	0.8268	0.7721	0.3224	
ECNU (Zhao et al., 2014)	0.8414	-	-	
Mean vectors	0.7577 (0.0013)	0.6738 (0.0027)	0.4557 (0.0090)	
DT-RNN (Socher et al., 2014)	0.7923 (0.0070)	0.7319 (0.0071)	0.3822 (0.0137)	
SDT-RNN (Socher et al., 2014)	0.7900 (0.0042)	0.7304 (0.0076)	0.3848 (0.0074)	
LSTM	0.8528 (0.0031)	0.7911 (0.0059)	0.2831 (0.0092)	
Bidirectional LSTM	0.8567 (0.0028)	0.7966 (0.0053)	0.2736 (0.0063)	
2-layer LSTM	0.8515 (0.0066)	0.7896 (0.0088)	0.2838 (0.0150)	
2-layer Bidirectional LSTM	0.8558 (0.0014)	0.7965 (0.0018)	0.2762 (0.0020)	
Constituency Tree-LSTM	0.8582 (0.0038)	0.7966 (0.0053)	0.2734 (0.0108)	
Dependency Tree-LSTM	0.8676 (0.0030)	0.8083 (0.0042)	0.2532 (0.0052)	

括弧内は標準偏差。dependencyの方が性能が良いのは、おそらくルートまでのエッジの数が少なくて済むため?

(著者スライドを大幅に改変)

Qualitative Analysis

LSTMs vs. Tree-LSTMs: How does structure help?

It 's actually **pretty good** in the first few minutes , **but** the longer the movie goes , the **worse** it gets .

LSTM Tree-LSTM Gold

What happens when the clauses are inverted?

LSTMs vs. Tree-LSTMs: How does structure help?

The longer the movie goes , the worse it gets , but it 's actually pretty good in the first few minutes .

LSTM	Tree-LSTM	Gold
+	-	-

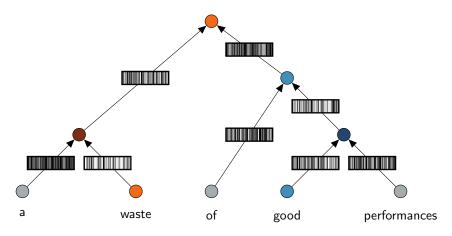
LSTM prediction switches, but Tree-LSTM prediction does not!

Either LSTM belief state is overwritten by last seen sentiment-rich word, *or* just always inverts the sentiment at "but". LSTM vs. Tree-LSTM: Hard Cases in Sentiment

If Steven Soderbergh's 'Solaris' is a failure it is a glorious failure.

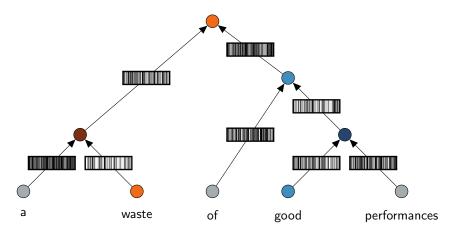
LSTM Tree-LSTM Gold

Forget Gates: Selective State Preservation



- Striped rectangles = forget gate activations
- More white \Rightarrow more of that child's state is preserved

Forget Gates: Selective State Preservation



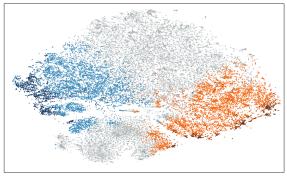
States of sentiment-rich children are emphasized
 e.g. "a" vs. "waste"

"a waste" emphasized over "of good performances"

Conclusion

- We introduce Tree-LSTMs for composing distributed representations of sentences
- Tree-LSTMs outperform previous methods on sentiment, semantic similarity
- By making use of structural information, we can do better than standard sequential LSTMs

Thanks



(t-SNE visualization of Tree-LSTM phrase and sentence representations

on the Stanford Sentiment Treebank)

Code

github.com/stanfordnlp/treelstm

Contact

Kai Sheng Tai kst@metamind.io